
Extending the Virtual Trackball Metaphor to Rear Touch Input
Sven Kratz∗

Deutsche Telekom Laboratories, TU Berlin
Michael Rohs†

Deutsche Telekom Laboratories, TU Berlin

ABSTRACT

Interaction with 3D objects and scenes is becoming increasingly
important on mobile devices. We explore 3D object rotation as a
fundamental interaction task. We propose an extension of the vir-
tual trackball metaphor, which is typically restricted to a half sphere
and single-sided interaction, to actually use a full sphere. The ex-
tension is enabled by a hardware setup called the “iPhone Sand-
wich,” which allows for simultaneous front-and-back touch input.
This setup makes the rear part of the virtual trackball accessible
for direct interaction and thus achieves the realization of the virtual
trackball metaphor to its full extent. We conducted a user study
that shows that a back-of-device virtual trackball is as effective as a
front-of-device virtual trackball and that both outperform an imple-
mentation of tilt-based input.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Input devices and strategies, interaction styles,
haptic I/O

1 INTRODUCTION

Interaction with 3D objects and scenes has many applications on
mobile devices, including games and 3D model inspection. The
hardware capabilities of mobile devices for rendering 3D content
are increasing rapidly. Direct touch input on mobile devices po-
tentially allows for more direct interaction with 3D objects than is
possible on desktop PCs. However, there are unique challenges
of devices with small displays, such as the relatively large amount
of occlusion that occurs with direct finger-based touch interaction.
This problem has been named the “fat finger problem” [1]. Sev-
eral solutions have been proposed for overcoming or alleviating this
issue, including back-of-device interaction [1, 11, 13, 14], tilting-
based interfaces [10], and temporal separation of input event and
interface action [4].

Relatively little research has focused on mobile interaction with
3D content (an example is [4]). In this work we are focusing on
3D rotation, which is a fundamental task allowing users to inspect
and understand 3D objects. A widely used interaction technique for
rotating 3D objects around arbitrary axes is the virtual sphere [3],
also called the virtual trackball [6]. A further related technique to
be mentioned is the Arcball [12]. In this technique, rotation is con-
trolled by projecting cursor points from the display surface onto
a virtual half sphere that is centered on the 3D object (Figure 1).
Rotation around the object’s center is then computed using the pro-
jected points. The virtual trackball is typically invisible and does
not have to be known to the user in order to be applied effectively.
Virtual trackballs allow for rotation around arbitrary axes in a nat-
ural manner. They integrate controller and controlled object and
can thus be categorized as a direct manipulation technique [7]. In
user tests virtual trackballs have been shown to be effective for pre-
cise 3D rotation tasks [3]. Other work ([9] and references therein)
investigates multi-finger 3D interaction for large screens.

∗e-mail: sven.kratz@telekom.de
†e-mail:michael.rohs@telekom.de

We propose to extend the virtual trackball metaphor, which is
typically restricted to a half sphere and single-sided interaction, to
actually use a full sphere. In order to achieve this we use an imple-
mentation called the “iPhone Sandwich,” which allows for simulta-
neous front-and-back touch input (Figure 6). This setup makes the
rear part of the trackball accessible for direct interaction and allows
for a natural implementation of the virtual trackball metaphor to its
full extent.

This paper is structured as follows. In the next section we discuss
the details of the two-sided virtual trackball design. We then discuss
our particular implementation and present a user study on 3D object
inspection that compares front and back virtual trackballs and tilt-
based control.

2 INTERACTION CONCEPT

We implemented the virtual trackball metaphor for direct touch in-
put on mobile devices and extended it for back-of-device input. Tra-
ditionally the mapping is done in such a way that a touch point pa =
(xa,ya)� is mapped onto a 3D point m(pa) = Pa = (xa,ya,za)� on
a hemisphere (if the distance from pa to the origin o is less than
the radius r of the hemisphere) using an orthographic projection
m : R

2 → R
3. If the touch point is outside of the hemisphere, then

it is mapped to Pa = (xa,ya,0)�. (The image plane is given by
z = 0.)

x

y

z

o

P1
p2

p1

P2

Figure 1: Touch points (p1, p2) inside virtual hemisphere: rotation
defined by great circular arc through projected touch points (P1, P2).

x

y

z

o
p1 = P1

p2 = P2

Figure 2: Touch points (p1, p2) outside virtual hemisphere: rotation
around z-axis.

The axis and angle of rotation are determined as follows. As-
sume that p2 is the current touch point and p1 is the previous

touch point in a sequence of touch points produced during a stroke.
The axis of rotation is then the cross product of the projected
points: a = m(p1)×m(p2) = P1 ×P2 and the angle of rotation is

θ = arccos(P1 P2

‖P1‖‖P2‖). This means that the rotation will be around

the z-axis if p1 and p2 are both outside the circle (Figure 2). If
both projected points are located on the hemisphere, then the ro-
tation axis is given by the great circle passing through P1 and P2

(Figure 1).

2.1 Two-Sided Trackball and Gaussian Mapping
As noted in [6] there is a discontinuity between positions inside
and outside the hemisphere. In our pilot tests we found that the
change in rotation behavior on entering or leaving the hemisphere
during a drag movement can indeed be irritating to users. To avoid
this discontinuity and to have a smoother transition from z-axis
rotation to x- or y-axis rotation, we changed the mapping from
a hemisphere to a Gaussian function (Figure 4, upper part), simi-
lar to the combined spherical and hyperbolic mapping function of
Bell [6]. The specific mapping function we use is: z = g(x,y) =

r1 exp(−((x−ox)2+(y−oy)2)
2r2

2

), where o = (ox,oy) is the center of the

screen. Note that we do not need to distinguish between the cases
of the point being located inside the hemisphere or outside of it.
Exclusive rotation in the z axis thus results if input is performed at
a sufficient distance from the center of the virtual trackball. The
parameter r1 corresponds to the height of the Gaussian curve and
r2 to its width. For the 480×320 pixel screen of our target device
we set these parameters to r1 = 120 and r2 = 80, respectively. A
precise correspondence to the size of the object was not found to be
necessary.

x

y

z

o

Figure 3: Extension of half sphere to full sphere enables rotation
control from both front and back.

To allow for back-of-device interaction we conceptually ex-
tended the half sphere to the backside. For the back side map-
ping function we inverted the above Gaussian function to extend its
range into negative z values as shown in Figure 4 (lower part). De-
pending on whether the touch input event originates from the front
side or the back side, the corresponding mapping function is used.
For front-side touch events the mapping function is z = g(x,y), for
back-side touch events it is z = −g(x,y).

In addition to the single sided touch input described above and
used in the study, we also implemented a simultaneous front- and
back-touch input. In this mode the thumb provides the front touch
point and the index finger provides the rear touch point. The center
of the virtual sphere is then relocated to be in the center between
thumb and index finger. This relocation of the virtual sphere allows
for 3D rotation in the case of larger displays in which the center
of the object might not be reachable with simultaneous front- and
back-input.

2.2 Tilt-Based Navigation
In addition to touch screen input we implemented a tilt-based
scheme that uses an accelerometer to sense device orientation (Fig-

Figure 4: Gaussian function instead of half sphere to avoid discon-
tinuity. Extends virtual trackball metaphor for front and back touch
input.

ure 5). The motivation for choosing tilt-input is the increasing pop-
ularity of tilt-based gaming applications on certain modern smart-
phones. The navigation is based on a steering-wheel metaphor, in
which the object rotates horizontally as the user tilts the device
around the z-axis. Horizontal rotation of the object is initiated if
the device tilt exceeds ±25◦ around the z-axis. The rotation speed
was set to be proportional to the tilt angle of the z-axis, with a min-
imum rotation speed of 100◦/s at 25◦ tilt and a maximum rotation
speed of 350◦/s at 90◦ tilt. Pre-tests showed that users could com-
fortably operate the tilt interface with these settings. Moreover, the
amount of vertical camera rotation is controlled by tilting around
the x-axis. This determines the angle from which the object is ob-
served. The virtual object is always oriented with the right side up,
i.e. the y-axis is always oriented opposite to the direction of gravity.

Figure 5: Tilt-based navigation using tilt around the z-axis (horizontal
camera rotation) and x-axis (vertical camera rotation).

3 IMPLEMENTATION

The front and rear touch interface for our study was implemented
on an iPhone “Sandwich” (Figure 6), which consists of two Apple
iPhones (2G version) linked back-to-back in order to enable back
of device interaction. The software consists of a dedicated rear
application that runs that sends rear touch events to the front device,
which runs the front application used in the user study. The data is
transferred via UDP over a dedicated WiFi network. There was
no perceivable delay. The front and rear virtual trackballs were
implemented using the touch events provided by the front and rear
iPhone, respectively.

Device tilt readings for x (tiltx = arctan
(z

x
)
) and z (tiltz =

arctan
(y

x
)

axes obtained from acceleration data provided by the
iPhone’s built-in 3 axis acceleration sensor. z represents the acceler-
ation measured perpendicular to the device’s screen, x the accelera-
tion in direction of the long side of the device and y the acceleration
in direction of the short side of the device.

The graphics for the front application were implemented using
OpenGL ES [8]. We used Blender [2] to model and export the
3D objects with corresponding normal vectors and texture mapping

Figure 6: The iPhone “Sandwich” as used in the study.

coordinates. Via a UDP connection, the experimenter can change
the number of objects displayed as well as the number of textured
faces shown on the objects in the scene. Through this connection,
trials can also be started and stopped remotely.

4 USER STUDY

We conducted a user study in order to measure the effectiveness of
3D object rotation using a front and rear touch virtual trackball as
well as tilt. We extended the experimental setup of Decle et al. [4],
who compared direct and planned 3D object inspection on a touch
display.

4.1 Task
Following the approach proposed by Decle, the test subjects were
presented with a freely rotatable 3D scene comprising a regular grid
of tetrahedrons. The subjects had to count the number of object
faces textured with a logo. Each face of the tetrahedrons was col-
ored in a distinct color, which allowed the test subjects to remember
the sides of the objects in a given scene which had already been ob-
served.

Initially, a blank screen was presented to the test subjects. The
experimenter could remotely change the settings for grid size and
number of textured faces remotely as well as initiate a trial. Once
the trial had been initiated, the corresponding scene was presented
to the test subject and a timer started. When the test subjects were
satisfied that they had found all the textured faces, they reported
the number of textured faces found to the experimenter. The task
completion time and number of found textured faces found was
recorded by the experimenter after each trial.

This type of task is well suited to evaluate 3D rotation input tech-
niques, because it requires the test subjects to look at all the faces
of the objects, thus requiring a substantial amount of rotation input
from the subjects. The effectiveness of the rotation technique can
be deduced from the trial completion times (input speed) and also
the error rates (an indicator of mental load).

4.2 Improvement to Existing Methodology
In contrast to the previous work, which used a randomly chosen
object in their study, we used a regular grid of tetrahedrons (Figure
7) as object set. The number of objects and the amount of textured
faces that must be found by the test subjects can be programmat-
ically defined. This not only allows us to precisely parametrize
the characteristics of the experiment, it also provides a more con-
trollable and comparable scenario for comparison of rotation tech-
niques in future studies.

4.3 Participants, Apparatus, and Design
We recruited 12 test subjects from a university environment. All
participants were between 20 and 25 years of age. They all owned
a mobile phone, but only one test subject reported to own a touch-
enabled smart phone. Only two of the subjects had prior experience
with mobile 3D applications. All participants had experience in
the use of computers, with 42 percent of them stating advanced or
expert skills. The participants received a monetary compensation
after the experiment.

(a) (b)

(c) (d)

Figure 7: Several variants of the tetrahedron grid presented to the
user in the study are shown. (a) is 2×2 grid with no textures. (b)
is 2×2 grid with 3 of 5 textures visible to the user. (c) shows a 4×4
grid with a single visible texture. (d) shows a 4×4 grid with 6 of 10
textures visible.

The experiment was conducted using the iPhone Sandwich dis-
cussed in the previous section. For the trials involving the front and
rear trackball and a standard iPhone 3G for the trials involving the
tilt input.

The experiment had a 3×2×2 within groups factorial design.
Factors were input method for rotation control (front trackball, rear
trackball, and tilt), grid size (2×2 and 4×4) as well as textured
face count (3 ± 1 and 9 ± 1). The textured face count was ran-
domly chosen in a ±1 range around 3 and 9 in order to prevent
the test subjects from inferring the correct number of textured faces
and forcing them to really count all textured faces in the scene pre-
sented to them. The order of input techniques was counterbalanced
according to a Latin Square design. The trials for each input tech-
nique were conducted in sequence, with the order of the grid size
and textured face count settings also counterbalanced according to
a Latin Square. Each setting was repeated two times resulting in a
total of 12×3×2×2×2 = 288 trials conducted.

We measured the task completion time as well as the error rate
of the reported textured face counts. Additionally, after each series
of trials for a given input technique, the participants were asked to
subjectively rate the workload of the input method using the NASA
TLX [5] rating scale.

4.4 Results

4.4.1 Task Completion Times

Figure 8 shows box plots of the task completion times grouped by
input method, grid size and number of textured faces.The mean ex-
ecution time for front was 14.72s, SD = 7.51s, for rear 13.89s,
SD = 6.56 and for tilt 23.73s, SD = 12.60s.

A univariate ANOVA shows significant effect in the task ex-
ecution time for input method (F2,287 = 38.73, p < 0.001), grid
size (F1,287 = 34.722, p < 0.001) and number of textured faces
(F1,287 = 16.820, p < 0.001). A Bonferroni pairwise comparison
of input method shows a significant difference for front vs. tilt and
rear vs. tilt (both p < 0.001), but no significant difference between
front and rear (p = 1.0).

The error rate, i.e. the number of incorrect responses to the
total number of responses, was 60.4% for front, 69.8% for rear,
and 68.6% for tilt. Participants were not provided with feedback
whether they counted the right number of textured surfaces, be-
cause we wanted to measure neutral error performance. The error
rates appear quite high, however, the responses were very close to
the actual numbers. The mean square error, i.e. the deviation of the
reported count from the actual count, was 0.97 for front, 0.70 for

Grid Size
42

Ex
ec

ut
io

n
Ti

m
e

60

50

40

30

20

10

0

Input Method

tiltrearfront

Ex
ec

ut
io

n
Ti

m
e

60

50

40

30

20

10

0

Number of Textured Faces

93

Ex
ec

ut
io

n
Ti

m
e

60

50

40

30

20

10

0

tilt
rear
front

Input Method

Figure 8: Box plots of the task completion times in s, grouped by input method (left), grid size (center) and number of textured faces (right).

rear, and 0.94 for tilt.

4.4.2 NASA TLX

Task

TiltRearFront

M
ea

n
W

ei
gh

te
d

Ra
tin

g

60

50

40

30

20

10

0

Error bars: +/- 2 SE

Figure 9: The average adjusted workload of the TLX rating scale.

The average adjusted NASA TLX workload ratings are shown
in Figure 9. Front and Rear received very similar workload ratings
(front: AVG=29.6, SD=20.6; rear: AVG=27.3, SD=19.5). Tilt was
rated worse (AVG=41.6 SD=29.4). These differences are however
only indicative and not statistically significant (F2,35 = 1.28, p =
0.29).

5 CONCLUSION

In this paper we propose the extension of the virtual trackball
metaphor from single-sided input on a half-sphere to double-sided
input on a full sphere. We show an alternative Gaussian mapping
function that avoids the discontinuity of a spherical trackball, sim-
ilar to Bell’s [6] spherical and hyperbolic mapping function. In a
user study we found that the virtual trackball with this mapping
function is effective for front as well as back touch input and that
both outperform a tilt-controlled navigation scheme. Even though
the tilt condition avoids occlusion, it is rate controlled and has a
more indirect mapping compared to the virtual trackball. NASA
TLX showed a slightly higher workload for tilt, however, without
being statistically significant. Overall, it is noteworthy that the sub-
jective workload rating was quite low (the scale ranges from 0 to
100, the maximum rating was 41.6 for tilt) yet the error rate was
relatively high. This means that the participants had difficulty in
judging their true performa nce and the result might be an indica-
tion that 3D object inspection is inherently difficult. Our results
also indicate that occlusion, or “fat finger problem” did not have a
significant performance effect on the tasks we measured. This may
have been due to the relative rotation of the 3D objects realized with
the virtual trackball, which allowed the users fingers to operate at an
offset with respect to the rotated objects. In the future we plan to ex-
tend this work by adding precision alignment studies. We also look

to investigate the use of multiple fingers on one side of the device
as well as the use of fingers on both sides of the trackball. Further-
more we look to integrate the behind-the-back trackball paradigm
in mobile applications scenarios.

REFERENCES

[1] P. Baudisch and G. Chu. Back-of-device interaction allows creating

very small touch devices. In Proc. of CHI ’09, pages 1923–1932, New

York, NY, USA, 2009. ACM.

[2] Blender.org. Blender. http://www.blender.org/.

[3] M. Chen, S. J. Mountford, and A. Sellen. A study in interactive 3-d

rotation using 2-d control devices. In Proc. of SIGGRAPH ’88, pages

121–129, New York, NY, USA, 1988. ACM.

[4] F. Decle and M. Hachet. A study of direct versus planned 3d camera

manipulation on touch-based mobile phones. In Proc. of MobileHCI
’09, pages 1–5, New York, NY, USA, 2009. ACM.

[5] S. Hart and L. Staveland. Development of NASA-TLX (Task Load

Index): Results of empirical and theoretical research. Human mental
workload, 1:139–183, 1988.

[6] K. Henriksen, J. Sporring, and K. Hornbaek. Virtual trackballs re-

visited. IEEE Transactions on Visualization and Computer Graphics,

10(2):206–216, 2004.

[7] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation

interfaces. Hum.-Comput. Interact., 1(4):311–338, 1985.

[8] Khronos Group. OpenGL ES. http://www.khronos.org/
opengles/.

[9] J. L. Reisman, P. L. Davidson, and J. Y. Han. A screen-space formu-

lation for 2d and 3d direct manipulation. In UIST ’09: Proceedings
of the 22nd annual ACM symposium on User interface software and
technology, pages 69–78, New York, NY, USA, 2009. ACM.

[10] J. Rekimoto. Tilting operations for small screen interfaces. In Pro-
ceedings of the 9th annual ACM symposium on User interface soft-
ware and technology, pages 167–168. ACM Press, 1996.

[11] E.-l. E. Shen, S.-s. D. Tsai, H.-h. Chu, Y.-j. J. Hsu, and C.-w. E.

Chen. Double-side multi-touch input for mobile devices. In CHI
EA ’09: Proceedings of the 27th international conference extended
abstracts on Human factors in computing systems, pages 4339–4344,

New York, NY, USA, 2009. ACM.

[12] K. Shoemake. ARCBALL: A user interface for specifying three-

dimensional orientation using a mouse. In Graphics Interface, vol-

ume 92, pages 151–156, 1992.

[13] M. Sugimoto and K. Hiroki. Hybridtouch: an intuitive manipulation

technique for pdas using their front and rear surfaces. In MobileHCI
’06: Proceedings of the 8th conference on Human-computer interac-
tion with mobile devices and services, pages 137–140, New York, NY,

USA, 2006. ACM.

[14] D. Wigdor, C. Forlines, P. Baudisch, J. Barnwell, and C. Shen. Lu-

cid touch: a see-through mobile device. In UIST ’07: Proceedings
of the 20th annual ACM symposium on User interface software and
technology, pages 269–278, New York, NY, USA, 2007. ACM.

