Reminder Ted's talk

- Ted Selker
 - "what is a human computer input sensor?"
- 2.15 pm, BU101 Öttingenstrasse 67

1

Mobile Technologies		
context and task theory interaction techniques in/output technologies		

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Taxonomy of Gesture styles

- sign language
- gesticulation

– communicative gestures made in conjunction with speech

 know how your users gesture naturally and design artificial gestures that have no cross-talk with natural gesturing

http://thomas.baudel.name/Morphologie/These/images/VI11.gif

Literature: Baudel et al. Charade: remote control of objects using free-hand gestures, Communications of the ACM 1993

LMU München – Medieninformatik – Andreas Butz, Julie Wagner – Mensch-Maschine-Interaktion II – WS2014/15

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Taxonomy of Gesture styles

- manipulative
 - gestures which tightly related movements to an object being manipulated
 - 2D Interaction: mouse or stylus
 - 3D Interaction: free-hand movement to mimic manipulations of physical objects
- deictic gestures (aimed pointing)
 - establish identity or spatial location of an object.
- semaphoric gestures (signals send to the computer)
 - stroke gestures, involve tracing of a specific path (marking menu)
 - static gestures (pose), involving no movement
 - dynamic gestures, require movement

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Taxonomy of Gesture styles

- pantomimic gestures:
 - demonstrate a specific task to be performed or imitated

- performed without object being present.

- iconic
 - communicate information about objects or entities (e.g. size, shapes and motion path)
 - static
 - dynamic

Literature: Aginer et al.: Understanding Mid-air Hand Gestures: A Study of Human Preferences in Usage of Gesture Types for HCI, Tech Report Microsoft Research Literature: Holz et al. Data Miming: Inferring Spatial Object Descriptions from Human Gesture, CHI 2011

Literature: Aginer et al.: Understanding Mid-air Hand Gestures: A Study of Human Preferences in Usage of Gesture Types for HCI, Tech Report Microsoft Research

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

context and task

theory

bimanual interaction

registration phase continuation

termination

pointing

gestures

interaction techniques

- easy to detect for touch sensitive surfaces
- what about freehand gestures?

three gesture phases

in/output technologies

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Gestural Input vs. Keyboard+Mouse

- loosing the hover state
- gesture design
- 'natural' gestures
 - dependent on culture
 - multi-finger chords (what does that remind you of?)
 - memorability, learnability
 - short-term vs. long-term retention
 - gesture discoverability
 - missing standards
 - difficult to write, keep track and maintain gesture recognition code
 - detect/resolve conflicts between gestures
 - and how to communicate and document a gesture?

MORE INFORMATION

Windows system key combinations

- F1: Help
- CTRL+ESC: Open Start menu
- ALT+TAB: Switch between open programs
- ALT+F4: Quit program
- SHIFT+DELETE: Delete item permanently
- Windows Logo+L: Lock the computer (without using CTRL+A

Windows program key combinations

- CTRL+C: Copy
- CTRL+X: Cut
- CTRL+V: Paste
- CTRL+Z: Undo
 CTRL+R: Rold
- CTRL+B: Bold
 CTRL+U: Underline
- CTRL+U: Underli
 CTRL+I: Italic

Mouse click/keyboard modifier combinations

- SHIFT+right click: Displays a shortcut menu containing alternative
- SHIFT+double click: Runs the alternate default command (the
- ALT+double click: Displays properties
- SHIFT+DELETE: Deletes an item immediately without placin

General keyboard-only commands

- F1: Starts Windows Help
- F10: Activates menu bar options
- SHIFT+F10 Opens a shortcut menu for the selected item (th
- CTRL+ESC: Opens the Start menu (use the ARROW keys to CTRL+ESC or ESC: Selects the Start button (press TAB to)
- CTRL+ESC or ESC: Selects the Start button (press TAB to :
 CTRL+SHIFT+ESC: Opens Windows Task Manager
- ALT+DOWN ARROW: Opens a drop-down list box
- ALT+TAB: Switch to another running program (hold down the

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Proton++

- declarative multitouch framework
- enables Multitouch gesture description as regular expression of touch event symbols
- generates gesture recognizers and static analysis of gesture conflicts

• note:

– "*" kleene star indicates that a symbol can appear zero or more consecutive times.

- "|" denotes the logical or of attribute values
- " wildcard, specifies that an attribute can take any value.

Literature: Kin,K. et al. "Proton++: A Customizable Declarative Multitouch Framework", UIST 2012

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

Proton++ - formal description language

Gesture

Matcher

Gestures

touch event

stream

matched

gestures

Gesture

Picker

Confidence

Calculators

execute

aesture

callback

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies touch event:

Hardware

-touch action (down, move, up)

Stream

Generator

Attribute

Generators

-touch ID (1st, 2nd, etc.)

raw input

- series of touch attribute values
 - direction = NW, hit-target = circle

Literature: Kin,K. et al. "Proton++: A Customizable Declarative Multitouch Framework", UIST 2012

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

pointing

gestures

interaction

techniques

stream generator

 – converts each touch event into a touch symbol of the form

in/output technologies

 $M_1^{s:W}$

where $E \in \{D, M, U\}$, attribute values $A_1: A_2: A_3, A_1$ corresponds to first attribute etc.

move-with-first-touch-on-star-object-inwest-direction

Literature: Kin,K. et al. "Proton++: A Customizable Declarative Multitouch Framework", UIST 2012

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

Slide 11

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Proton++ Gesture

 describe a gesture as regular expression over these touch event symbols

where $E \in \{D,M,U\}$, attribute values $A_1:A_2:A_3, A_1$ corresponds to first attribute etc.

 $E_{T_{ID}}^{A_1:A_2:A_3...}$

 $D_1^{S:N}M_1^{S:N} * U_1^{S:N}$

consider attributes: hit-target shape, direction

Literature: Kin,K. et al. "Proton++: A Customizable Declarative Multitouch Framework", UIST 2012

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

Literature: Kin,K. et al. "Proton++: A Customizable Declarative Multitouch Framework", UIST 2012

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

context and task

theory

bimanual interaction

Proton++ Gesture

 $E_{T_{ID}}^{A_1:A_2:A_3...}$

 describe a gesture as regular expression over these touch event symbols

where $E \in \{D, M, U\}$, attribute values $A_1: A_2: A_3, A_1$ corresponds to first attribute etc.

pointing

gestures

interaction techniques

in/output technologies

$$\int_{D_{1}^{s:N}|D_{1}^{s:N}|} S_{M_{1}^{s:N}|M_{1}^{s:N}|} S_{U_{1}^{s:N}|U_{1}^{s:N}|} S_{U_{1}^{s:N}|U_{1}^{s:N}|} S_{U_{1}^{s:N}|U_{1}^{s:N}|} S_{U_{1}^{s:N}|U_{1}^{s:N}|} S_{U_{1}^{s:N}|U_{1}^{s:N}|U_{1}^{s:N}|} S_{U_{1}^{s:N}|U_{1}^{s:N}|} S_{U_{1}^{s:N}|} S_{U_{1}^{s:N}|$$

consider attributes: hit-target shape, direction

Literature: Kin,K. et al. "Proton++: A Customizable Declarative Multitouch Framework", UIST 2012

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

Custom Attributes context and task for example a pinch attribute: relative movements of multiple touches theory - touches are assigned a 'P' when on average the touches bimanual move towards the centroid, an 'S' when the touches move interaction away from the centroid and an 'N'when they stay stationary pointing (a)_r Ν gestures interaction 1 Minute Micro Task: techniques Create the regular expression for this gesture in/output technologies

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Custom Attributes

- for example a pinch attribute:
 - relative movements of multiple touches
 - touches are assigned a 'P' when on average the touches move towards the centroid, an 'S' when the touches move away from the centroid and an 'N'when they stay stationary

context and task

theory

bimanual interaction

pointing

Further Attributes

- Direction Attribute
- Touch Area Attribute
 - Finger Orientation Attribute
 - Screen Location Attribute

$gestures \rightarrow$ Let's practice that in the exercise

interaction techniques

in/output technologies

LMU München – Medieninformatik – Andreas Butz, Julie Wagner – Mensch-Maschine-Interaktion II – WS2014/15

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Discussion

 How would you come up with a gesture set for a drawing application on your tablet?

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Elicitation studies

- type of participatory design
 - come up with a gesture set
 - understanding mental modal
- guessability study methodology (theater approach) that presents the effects of a gesture to the participant and elicits the causes meant to invoke them.
- Wobbock and colleagues combined it with think-aloud protocol and video analysis
 - detailed picture of user-defined gestures and mental model performance that accompany them

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI'09

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Procedure

- randomly present X referents to participants
- For each referent, ask participant to perform a 1-handed and a 2-handed gesture (or other factors that you want to include...)
- show a Likert scale and ask them to rate
 - goodness
 - -ease
 - comfort
 - -etc.

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Procedure

- you collect
 - user-defined gesture set
 - performance measures
 - subjective responses
 - -qualitative observations
 - gesture taxonomy!
 - what are the aspects/patterns that are shared by different gestures for a referent?

Taxonomy of Surface Gestures

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

	TAXONOMY OF S	SURFACE GESTURES
Form	static pose	Hand pose is held in one location.
	dynamic pose	Hand pose changes in one location.
	static pose and path	Hand pose is held as hand moves.
	dynamic pose and path	Hand pose changes as hand moves.
	one-point touch	Static pose with one finger.
	one-point path	Static pose & path with one finger.
Nature	symbolic	Gesture visually depicts a symbol.
	physical	Gesture acts physically on objects.
	metaphorical	Gesture indicates a metaphor.
	abstract	Gesture-referent mapping is arbitrary.
Binding	object-centric	Location defined w.r.t. object features.
	world-dependent	Location defined w.r.t. world features.
	world-independent	Location can ignore world features.
	mixed dependencies	World-independent plus another.
Flow	discrete	Response occurs <i>after</i> the user acts.
	continuous	Response occurs <i>while</i> the user acts.

Table 2. Taxonomy of surface gestures based on 1080 gestures.The abbreviation "w.r.t." means "with respect to."

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI'09

LMU München – Medieninformatik – Andreas Butz, Julie Wagner – Mensch-Maschine-Interaktion II – WS2014/15

Agreement

 $A = \frac{\sum_{r \in R} \sum_{P_i \subseteq P_r} \left\lfloor \frac{|I|}{|P_r|} \right\rfloor}{1 + 1}$

group gestures within each referent

- continagreement score A
 - reflects in a single number the degree of consensus among participants.

r is a referent in a set of all referents R P_i is a subset of identical gestures from P_r

Flow

uous .465

world-

dependent

.182

world-

hdependent

.089

mixed .027

g

technologies

-e.g. gesture agreement of "move a little" (2 hands) across 20 participants showed four groups of identical gestures: 12, 3, 3, 2

$$A_{move\ a\ little} = \left(\frac{12}{20}\right)^2 + \left(\frac{3}{20}\right)^2 + \left(\frac{3}{20}\right)^2 + \left(\frac{3}{20}\right)^2 = 0.42$$

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI'09

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI'09

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

user-defined gesture set

- take the largest groups of identical gestures for each referent.
- if same gesture was proposed for two commands, a conflict occurred
 - resolve this, the referent with largest group won the gesture.
 - they came up with a conflict-free set that covers 57% of all proposed gestures.

Wobbrock et al.: User-Defined Gestures for Surface Computing, CHI'09

context and task	Discussion
theory	 do 'natural' gestures exist?
bimanual interaction	
pointing	
gestures	
interaction techniques	
in/output technologies	

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

Gestural Input vs. Keyboard+Mouse

- loosing the hover state
- gesture design
- 'natural' gestures
 - dependent on culture
 - multi-finger chords (what does that remind you of?)
 - memorability, learnability
 - short-term vs. long-term retention
 - gesture discoverability
 - missing standards
 - difficult to write, keep track and maintain gesture recognition code
 - detect/resolve conflicts between gestures
 - and how to communicate and document a gesture?

MORE INFORMATION

Windows system key combinations

- F1: Help
- CTRL+ESC: Open Start menu
- ALT+TAB: Switch between open programs
- ALT+F4: Quit program
- SHIFT+DELETE: Delete item permanently
- Windows Logo+L: Lock the computer (without using CTRL+A

Windows program key combinations

- CTRL+C: Copy
- CTRL+X: Cut
- CTRL+V: Paste
- CTRL+Z: Undo
 CTRL+R: Dold
- CTRL+B: Bold
 CTRL+L: Updarlin
- CTRL+U: Underline
 CTRL+I: Italic

Mouse click/keyboard modifier combinations

- SHIFT+right click: Displays a shortcut menu containing alter
- SHIFT+double click: Runs the alternate default command (the
- ALT+double click: Displays properties
- SHIFT+DELETE: Deletes an item immediately without placin

General keyboard-only commands

- F1: Starts Windows Help
- F10: Activates menu bar options
- SHIFT+F10 Opens a shortcut menu for the selected item (th STELL F200 Opens)
- CTRL+ESC: Opens the Start menu (use the ARROW keys to CTRL+ESC or ESC: Selects the Start button (press TAR to)
- CTRL+ESC or ESC: Selects the Start button (press TAB to : CTRL+SHIFT+ESC: Opens Windows Task Manager
- CTRL+SHIFT+ESC: Opens Windows Task Manager
 ALT+DOWN ARROW: Opens a drop-down list box
- ALT+TAB: Switch to another running program (hold down the

context and task

theory

bimanual interaction

pointing

gestures

interaction techniques

in/output technologies

gesture communication

- Feedforward mechanisms provide information about a gesture's shape and its association with a command prior to execution (similar to selfrevealing gestures)
 - physical help card

– pop-up cheat sheet

take screen space

- Feedback mechanisms provide low-level information about recognition process, either during or after execution
 - repetition and choice
 - shape beautification
 - modify users hand drawn input to illustrate perfect instance of a given gesture class.

Bau et al.: OctoPocus: A Dynamic Guide for Learning Gesture-Based Command Sets, UIST'08

Bau et al.: OctoPocus: A Dynamic Guide for Learning Gesture-Based Command Sets, UIST'08

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

http://vimeo.com/2116172

LMU München — Medieninformatik — Andreas Butz, Julie Wagner — Mensch-Maschine-Interaktion II — WS2014/15

Slide 30