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Last.fm provides diverse information, but specialized visualizations
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» Listening to last.fm music (audioscrobbler) produces implicit User-
Generated-Content

= Available visualizations for particular data (charts, listening histories,
national comparison)

= MusicTrends was designed to gain insights from aggregated
information about users, artists and tags
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Separation of data aggregation and visualitazion

fetch data
from last.fm

data ®

aggregation visualization

Database Interface
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Use of a database provides flexibility for complex data
Collecting data from different sources

= last.fm web services/java bindings

Name L User Name = |SO 1366 country information
SN Wee; = World map coordinates
Next_Chart :
] A Data Aggregation
Playcount Aggregated data is drived, based on the
basic data
Name —
L] Example
Country similarity is calculated based on
Country Name = Number of artists con.tain.ed in bo'Fh lists
N — _| Weok = = Ranks of common artists in both lists
ISO Code Y
X Position n-— n = number of artists in
Y Position Playeount Z Commt(')r; Ki list
- [ = fh' 1 - aistrankin county ls
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Several views for different characteristics of data

Vi su al i7 at i on fo ST
= 3 different categories
user/artist/tag
= 2 different views
map-view and abstract-view

Interaction

= Navigation within inter- _ —
connected views

= Timeslider ® .
= Detailed information/settings
in sub-windows
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User study designed to gain information about insights and usability

= Questions
l. Is the application helpful to gain new insights?
ll. What kind of insights can be found?

= Procedure

|. Pre-questionnaiere: Demographic data and experience
with last.fm

Il. Exploratory Browsing: Users were asked to browse the
content in an free manor, while they should think aloud
about new insights

lIl.Post-Questionnaire: Overall impression about
MusicTrends

= Participants

male 5
female 6
age 22-34
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Different aspects analysis afford individual forms of evaluation

= Qualitative analysis of participants’ overall impression of the system
= |nsight evaluation:

Separate schemes for gantitative evaluation (complexity) and insight
clustering (classification)

= Example: “Brasil has the highest similarity with the worldwide charts over the

time”
Category (weight 1/3) Level (weight 1/3) Information (weight ¥2) %
User Artist Tag Overall Country Individual Spatial Temporal Complexity

1 0 0 1 0 0 0 1 38,9

Category Spartial Information Temporal Information
User Artist Tag Single Multiple Pointin Time | Constancy Dynamics
Country | Countries/World
1 0 0 1 0 0 1 0
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MusicTrends supports people to gain new insights
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Map-View Abstract-View

® Ease of Use

T(11)=1,35; p=0,104

Enjoyment

T(11)=3,31; p=0,004

® Helpfulness

T(11)=2,89; p=0,008

® Learnability

T(11)=2,70; P=0,011

® Understandability

T(11)=1,42; p=0,093

= Map-view outperformes abstract-view in general, especially in Enjoyment,
Helpfulness and Learnability
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Users with last.fm experience tend to show higher performance

insights
06:29

min/insight

80%

— 05:46

70%

— 05:02

60%

— 04:19

50%

— 03:36

— 02:53

— 02:10

— 01:26

— 00:43

— 00:00

- 40%
_ 30%
_20%
— 10%
— 0%

autonomy

complexity

Experienced users gain more insights

Experienced users acquire insights faster
Experienced users need less help
Complexity shows no direct relation to

users’ experience
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—48%

- 46%
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] Unexperienced
[] Little experience

B High experience
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Insights show constancy in taste and dynamics for artists

18 = Most findings for Artists/fewest for

16 Users

14 = Same number for Point in Time over

12 all categories

10 = Most Development insights for artists
8 = Most Constant State insights for tags
6
4 I I I Point in Time statements often depict
2 - participants’ first assumption
0 - l = general taste of last.fm users is rather

User Artist constant over time

= popularity of artists is influenced by
temporal trends more than music
genres

[] Pointin Time [ ] Constancy [l Dynamics
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Most insights

consider temporal information about multiple counties

18 = No insights for user Development on
16 World level
14 = No insights for tag Development for
12 Single Countries
10 = Mostly insights about Multiple

8 Countries

6

4 =» Uers are dedicated to one country

2 _ I . - = Assumption: map-view helps to

0 ' derive worldwide information

User Artist
[] Pointin Time [] Constancy ] Dynamics

[] single Country [ Multiple Countries/World
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MusicTrends provides insights into UCG of last.fm

= Application
= Source data: UGC grouped in 3 categories
= Visualization: map-view and abstract-view
* |nteraction: timeslider, inter-connected views

= Insight-based Evaluation
= Positive feedback for map-view
= Correlation between user experience and user performance

= Most insights could cover both temporal and spatial
information
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