7 Electronic Payment Systems

7.1 Traditional Payment Systems

- 7.2 Credit-Card Based Payment Standards
- 7.3 Electronic Cash and Micropayments
- 7.4 Practice of E- and M-Payment

Literature:

Donal O'Mahony, Michael Peirce, Hitesh Tewari: Electronic Payment Systems for E-Commerce, 2nd ed., Artech House 2001

Thomas Lammer (Hrsg.): Handbuch E-Money, E-Payment & M-Payment, Physica-Verlag 2006

A Brief History of Cash Money

- Direct exchange of goods
 - Problematic since "double coincidence of wants" is required
- Commodity payment
 - Exchange with goods of well-known value (e.g. corn, salt, gold)
 - Leading to gold and silver coins
- Commodity standard
 - Tokens (e.g. paper notes) which are backed by deposits of the issuer
- *Fiat* money
 - Assuming a highly stable economy and government
 - Tokens no longer (or not fully) backed by deposits
 - Trust in the issuer replaces deposits
- Cash is used for 80% of all financial transactions
 - Cash is not free of transaction costs!
 - Replacement of coins/notes paid out of taxes

Forms of Payment

- Cash
- Cheques
 - Using "clearing house" between banks
- Giro, direct credit transfer (Überweisung), direct debit (Lastschrift)
 - Requires "clearing house", today fully automated ("Automated Clearing House ACH")
- Wire transfer
- Payment cards (cost usually borne by the merchant):
 - Credit card
 - » Associated with credit promise from bank
 - Charge card
 - » Requires full settlement of bill each month
 - Debit card
 - » Card used to initiate an immediate direct debit

Customer Preferences in Non-Cash Payment

• According to the *Bank for International Settlements*, www.bis.org, 2003

Country	Cheques	Credit Transfer	Payment Cards	Direct Debit	
USA	69.3 %	3.7 %	25.0 %	2.0 %	
Netherlands	2.8 %	46.1 %	22.9 %	28.1 %	
UK	34.5 %	18.5 %	29.3 %	17.7 %	
Germany	5.7 %	50.1 %	4.6 %	42.6 %	
Turkey	(6.9 %)	(2.6 %)	(83.9 %)		1997 (1998)

	Country	Cheques	Credit Transfer	Payment Cards (+ e-money cards)	Direct Debit
	USA	53.5 %	5.0 %	38.3 %	3.1 %
	Netherlands	0.2 %	38.2 %	32.4 % + 1.0 %	28.2 %
	UK	23.5 %	17.7 %	39.0 %	19.7 %
	Germany	2.3 %	49.8 %	11.3 % + 0.2 %	36.4 %
2001	Turkey				

7 Electronic Payment Systems

7.1 Traditional Payment Systems

- 7.2 Credit-Card Based Payment Standards
- 7.3 Electronic Cash and Micropayments
- 7.4 Practice of E- and M-Payment

Literature:

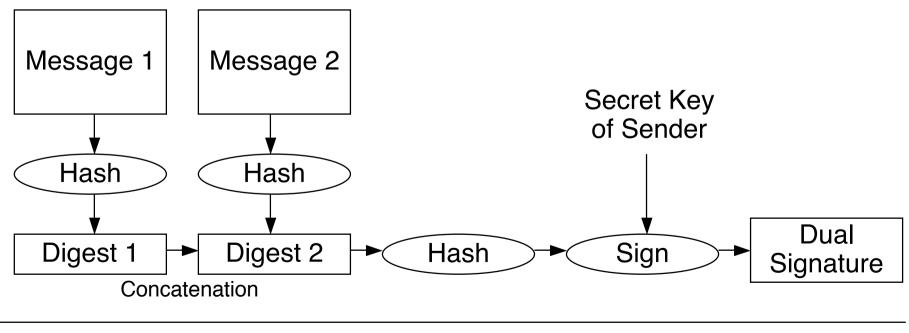
Donal O'Mahony, Michael Peirce, Hitesh Tewari: Electronic Payment Systems for E-Commerce, 2nd ed., Artech House 2001

Thomas Lammer (Hrsg.): Handbuch E-Money, E-Payment & M-Payment, Physica-Verlag 2006

Credit Card MOTO Transactions

- MOTO = Mail Order/Telephone Order
- Transactions without physical co-location of buyer and merchant
- Special rules:
 - Additional information
 - » Address
 - » Card security code
 - Often: Matching of delivery address and credit card billing address
- Extremely popular form of online payment
 - Data transfer secured by SSL, i.e. hybrid symmetric/asymmetric cryptosystem
- Disadvantages:
 - Many possibilities for fraud
 - Anonymity of customer not possible
 - High transaction cost difficult for small amounts

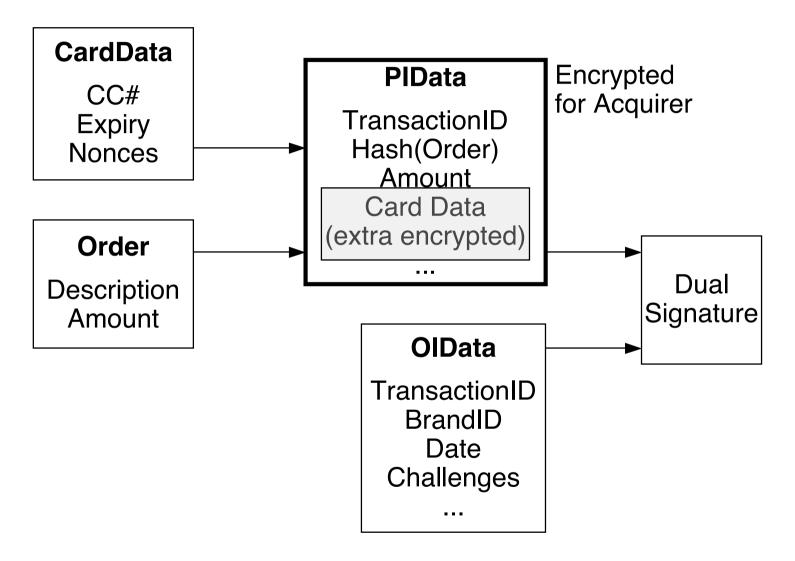
SET


- SET = Secure Electronic Transactions
 - Standard by Visa and MasterCard 1996
 - Today almost without significance (after attempt to revive it in 1999)
 - But still a model for a thorough way to deal with the problem
- Scope restricted to authorization of credit card payments
 - No actual funds transfer
- Focus on trust model and authorization
 - Using public/private key cryptosystem
- Complex (three volumes specification)
 - But safe against all major risks
- Special PKI: All participants have to obtain (X.509) certificates
 - "Brand Certification Authority" (MasterCard/Visa)
 - Geopolitical Authority (optional)
 - Cardholder/Merchant/Payment CA

SET Initialization

- Initialization (PInitReq):
 - Cardholder to Merchant
 - Contains: Brand of card, list of certificates, "challenge" (to ensure freshness)
- Initialization Response (PInitRes):
 - Merchant to Cardholder
 - Contains: Transaction ID, response to challenge, certificates, "merchant challenge"
- Roles:
 - Cardholder (Buyer)
 - Merchant (Seller)
 - "Acquirer" (essentially credit card organization)
 - » Operating a "payment gateway"

Dual Signatures


- General concept:
- Alice wants to send Message 1 to Bob and Message 2 to Carol, and she wants to assure Bob and Carol that the respective other message exists
 - To Bob she sends Message 1 and Digest 2
 - To Carol she sends Message 2 and Digest 1

SET Purchase

- Purchase Order (PReq):
 - Cardholder to Merchant
 - Order Information (OI):
 - » Identifies order description at the merchant
 - » Contains response to merchant challenge
 - » Includes random information ("nonce") for protection against dictionary attacks
 - Payment instructions (PI):
 - » Card data, purchase amount, hash of order, transaction ID
 - Payment instructions are *encrypted* with acquirer's public key (merchant cannot read it)
 - » "Extra strong" encryption by using RSA (and not DES, for instance)
 - Dual signature for OI going to Merchant and PI going to Acquirer

SET Purchase Request Data

SET Authorization

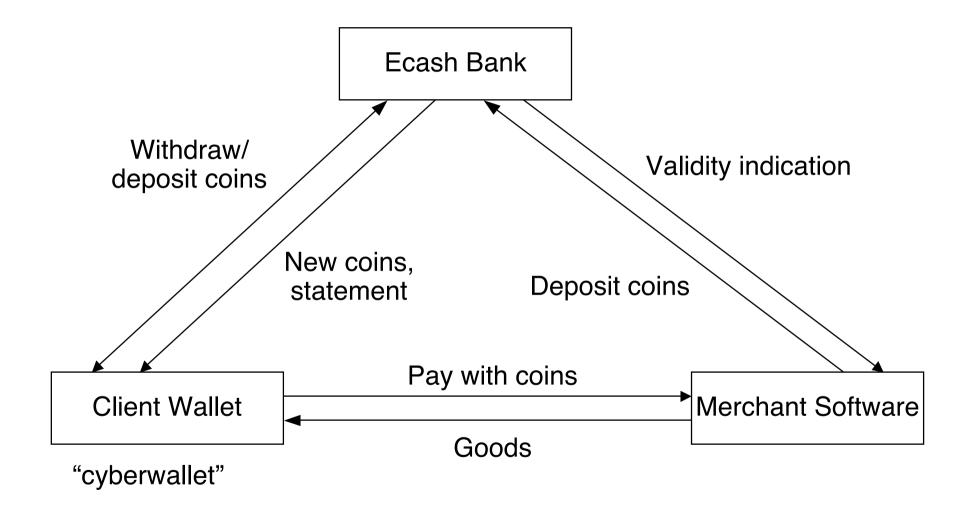
- Authorization Request (AuthReq)
 - Merchant to Acquirer
 - Encrypted with Acquirer's public key
 - Signed with Merchant's secret key
- Contains: TransactionID, amount, Hash(Order), Hash(OIData), PIData, merchant details, cardholder billing address
 - Hash(Order) contained twice
 - » from merchant directly
 - » as part of PIData (encrypted, e.g. just forwarded from cardholder)
 - Can be used to verify that cardholder and merchant have agreed on order details
- Authorization Response (AuthRes)
 - Acquirer to Merchant
 - Contains: TransactionID, authorization code, amount, data, capture token (to be used for actual funds transfer)

7 Electronic Payment Systems

- 7.1 Traditional Payment Systems
- 7.2 Credit-Card Based Payment Standards
- 7.3 Electronic Cash and Micropayments
- 7.4 Practice of E- and M-Payment

Literature:

Donal O'Mahony, Michael Peirce, Hitesh Tewari: Electronic Payment Systems for E-Commerce, 2nd ed., Artech House 2001


Electronic Cash

- Many attempts have been made to transfer the advantages of cash money to digital transactions:
 - Acceptability independent of transaction amount
 - Guaranteed payment no risk of later cancellation
 - No transaction charges
 - » no authorization, no respective communications traffic
 - Anonymity
- There does not exist an electronic system which captures all of the above attributes!
 - But there are interesting approximations...

DigiCash / Ecash

- DigiCash (David Chaum)
 - Dutch/U.S. company, 1992
- Ecash
 - Electronic equivalent of cash, developed by DigiCash
 - Fully anonymous using cryptographic techniques
- History:
 - 1995: Mark Twain Bank, Missouri, started issuing real Ecash dollar coins
 - 1998: DigiCash bankruptcy
 - Relaunch as "eCash Technologies"
 - 2002: eCash Technologies taken over by InfoSpace
 - » Mainly to acquire valuable patents
- Ecash still an interesting model for electronic cash

Ecash Model

Minting Electronic Coins

- Each coin has a serial number
 - Serial number is generated by a client's "cyberwallet" software
 - Randomly chosen, large enough to avoid frequent duplicates (e.g. 100 bits)
- Coins, respectively their serial numbers, are signed by the bank
 - Bank does not know the serial number through "blinding" (see next slide)
 - Bank is not able to trace which coins are given to which person
- Bank uses different keys for different coin values
 - E.g. 5-cent, 10-cent, 50-cent signatures
- Contents of an electronic coin:
 - Serial number SN
 - Key version (can be used to obtain value, currency, expiry date)
 - Signature: F(SN), encrypted with one of the bank's secret keys
 - » Where F computes a hash code of SN and adds some redundant information to avoid forging of coins

Blinding

- General concept:
- Alice wants Bob to sign a message without Bob seeing the content.
- Analogy: Envelope with message and a sheet of carbon paper
 - Signature on the outside of the envelope goes through to the contained message
- Procedure:
 - Blinding achieved by multiplication with random value (blinding factor)
 - Alice sends multiplied (blinded) message B(M) to Bob
 - Bob signs blinded message: Sign_{Bob}(B(M))
 - Signature function and blinding (multiplication) are *commutative:*

» $\operatorname{Sign}_{X}(B(M)) = B(\operatorname{Sign}_{X}(M))$

- Alice de-blinds message (by division with blinding factor)
- The resulting message is $Sign_{Bob}(M)$, indistinguishable from a message directly signed by Bob

Avoiding Forged Coins

- Assuming the function F was omitted
 - Coin contains serial number *SN* in plaintext
 - Signature is just SK_{\$1}(SN)
- Forging a coin:
 - Choose a large random number R
 - Encrypt *R* with bank's \$1 public key: $S = PK_{s_1}(R)$
 - Construct coins which contain *S* as serial number and *R* as signature
 - Now the coin can be verified (not distinguishable from real coin):

 $\mathsf{SK}_{\$1}(S) = \mathsf{SK}_{\$1}(\mathsf{PK}_{\$1}(R)) = R$

- Therefore introduction of function F in coin definition

Avoiding Double Spending

- E-Coins are just pieces of data which can be copied
 - How to avoid that the same coin is spent several times?
- Ecash solution:
 - Central database of *spent coins*
 - Merchants must have an online connection with the Ecash bank
 - Before accepting a coin: check whether it has been spent already
- Problem:
 - Database of spent coins can become a performance bottleneck
 - Offline trade with coins is impossible

An Ecash Purchase

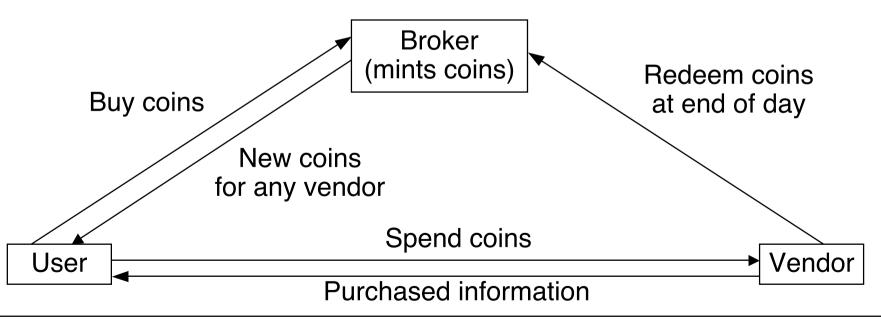
- Client has Ecash coins stored in his cyberwallet
- Merchant receives an order from the client
- Merchant sends a *payment request* to the client's cyberwallet
 - Amount, timestamp, order description, ...
- User is asked whether he/she wants to pay
- Coins for the (exact) amount are taken from wallet
 - There is no change with Ecash
 - Otherwise the merchant could record the serial numbers of his coins given to the client and try to identify the client
- Coins are encrypted with bank's public key when sent to merchant
 - Merchant just forwards them but cannot read anything
- To prove the payment:
 - Client generates a secret and includes (a hash of) it into the payment info.

The Perfect Crime

Bruce Schneier:

- An anonymous kidnapper takes a hostage.
- Kidnapper prepares a large number of blinded coins and sends them to the bank as a ransom demand.
- Bank signs the coins to save the hostage.
- Kidnapper demands that the signed coins are published, e.g. in newspaper or television. Pickup cannot be traced. Nobody else can unblind the coins but the kidnapper.
- Kidnapper saves the blinded coins to his computer, unblinds them, and has a fortune in anonymous digital cash
- Hopefully, kidnapper releases the hostage...

Off-Line Coins


- Chaum/Pedersen 1992, Stefan Brands 1993:
 - Coins may consist of several parts
 - To use a coin in a payment transaction, one part of the coin must be revealed. Payer is not identified.
 - If the coin is used a second time, a second part of the coin is revealed and the payer is identified.
 - This way, it is possible to trace double spendings after the fact, and to identify the origin of the double-spent coins.
- Algorithmic idea:
 - Identity / of user is encrypted with one-time random number P
 - » Is part of coin
 - Special *challenge-response* system: Merchant asks client for answer on a random challenge and stores the results
 - As soon as the merchant has *two* results for different challenges, he can calculate the information required to decrypt the identity of the payer

Macropayments and Micropayments

- Systems described above were designed for "macropayments"
 - Minimum granularity 1 cent (penny, etc)
- Prices for services often quoted in smaller quantities
 - See petrol prices...
 - Hundredth or thousandth of cent
- Micropayment:
 - Payment technology suitable for very small amounts
- Problem:
 - Transaction overhead from macropayment systems larger than value
- Advantage:
 - Losing an electronic micro-coin is not a serious damage
- Light-weight, fast, scalable protocols
- Historic pioneer: **Millicent** project (1995)
 - Digital Equipment Corporation (taken over by Compaq, now part of HP)
 - Key innovations: *Brokers* intermediating between vendors and *scrip* (digital cash valid only for a specific vendor)

MicroMint

- Developed by Ron Rivest and Adi Shamir (1996) (similar: *PayWord*)
- Idea:
 - Signing of e-coins by bank is computationally too expensive
 - Make it computationally difficult for everybody else but a broker to mint valid coins
 - Make it quick and efficient for everybody to verify a coin
 - No check for double spending

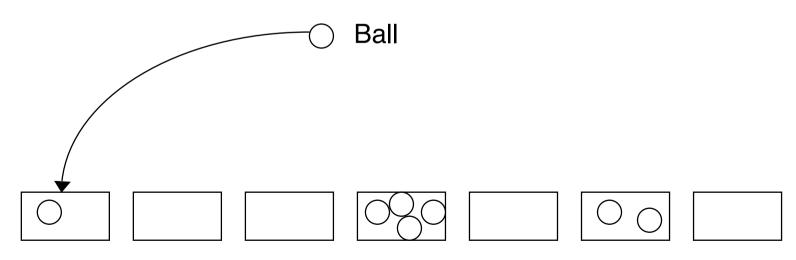
k-Way Hash Collisions

- MicroMint coin is a *k-way hash collision function*
- One-way hash function:

 $\mathsf{H}(x) = y$

• Hash function collision:

 $H(x_1) = H(x_2) = y$


- It is computationally hard to generate two values that map to the same value
- *k*-way hash function collision:
 - *k* different input values map to the same output value
- MicroMint coin (4-way hash collision):

C = [x_1 , x_2 , x_3 , x_4] such that the hash function gives the same value for all x_i

- Verifying a MicroMint coin:
 - Just check the hash function value for the four given values

Minting MicroMint Coins

- Length of x and y values restricted to a fixed number of bits
 - Assuming y values are *n* bits long
- Analogy: Throwing balls at 2ⁿ bins
 - "Balls" generated at random
 - "Bins" represent y values
- Successfully minted coin:
 - 4 balls in one bin
- Difficult to mint first coin, further coins much quicker

Preventing Forgery with MicroMint

- Special hardware:
 - Broker can gain speed advantage over attackers
- Short coin validity period:
 - Coins do not live more than a month
- Early minting:
 - Coins are minted a month or more before distribution speed advantage
- Coin validity criterion:
 - May be changed every month, e.g. the used hash function
- Different bins:
 - Broker may remember the unused bins for the month and use them to detect forged coins

• ...

7 Electronic Payment Systems

- 7.1 Traditional Payment Systems
- 7.2 Credit-Card Based Payment Standards
- 7.3 Electronic Cash and Micropayments
- 7.4 Practice of E- and M-Payment

Literature:

Thomas Lammer (Hrsg.): Handbuch E-Money, E-Payment & M-Payment, Physica-Verlag 2006

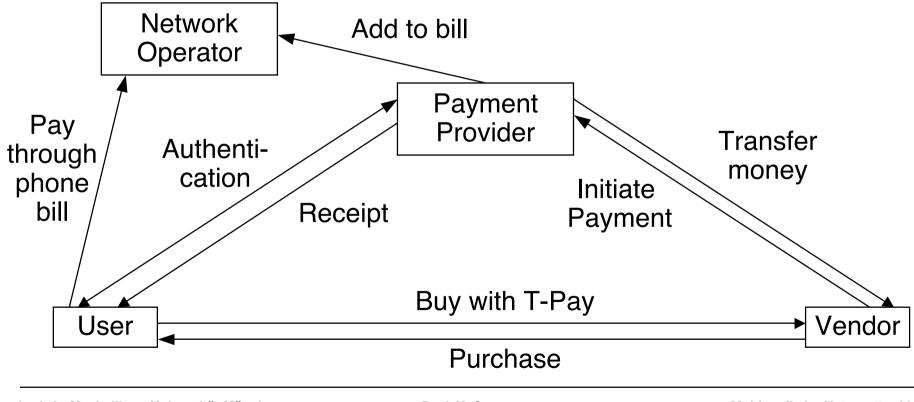
Payment Service Providers

- Nowadays, many users apparently have learned to trust encrypted transmission over the Internet
 - Problem: Confidential data (e.g. credit card number, bank account) still known to merchant
- Solutions:
 - Build up high-trust merchant brands (e.g. Amazon)
 - Use independent third parties as *payment service provider*
 - » Examples: FirstGate/ClickAndBuy, PayPal
- Payment service provider:
 - Establishes account with user, keeps confidential data away from merchant
 - Provides easy tools for merchants to integrate payment functions into Web shops
 - Accumulates small payments to monthly bills

Forms of Payment in E-Commerce

- Pre-paid
 - Hardware-based (Geldkarte)
 - Software-based
 - » Anonymous (paysafecard, T-Pay MicroMoney)
 - » Registered (WEB.Cent)
- Pay-now
 - Cash on delivery (Nachnahme)
 - Direct debit, debit card
 - Online credit transfer (eps, sofortueberweisung)
- Pay later
 - Credit transfer after delivery, Credit card
 - Accumulative billing (ClickAndBuy, T-Pay)
 - M-Payments (paybox etc.)

Mobile Network Based Payment Systems (M-Payment)


- Example PayBox (www.paybox.net)
 - Registration with Payment Service Provider (paybox) – Customer obtains PIN

- Payment request in E-Commerce or M-Commerce applications
- Payment Service Provider calls back on mobile phone
- Customer confirms payment by entering PIN
- Confirmation by email/SMS
- Mobile phone bill is *not* used for money transfer
- Add-on services:
 - Online credit transfer
 - User-to-user credit transfer via mobile phone
- Paybox company in Germany: Business closed 2003
 - Some success in Austria (www.paybox.at)
 - Company taken over by Sybase in 2008

Payment through Phone Bill

- Example T-Pay (Deutsche Telekom)
 - Billing data of phone bills are kept up to date
 - No additional bill for customer
 - Suitable for small amounts

Near-Range Radio-Based Payment

- Radio Frequency Identification (RFID)
 - Usually embedded in SmartCards
- RFID-based contactless payment
 - E.g. Sony FeliCa
- Special versions embedded in mobile phones
 - E.g. NTT DoCoMo variant of FeliCa
- Leads to a solution where cryptographically protected (hardware) wallet is embedded into network end system

Banner Advertising

- Advertising is often used as a form of payment on the Web
- Information services on the Web can be financed by advertising income
- Typical billing schemes for advertisers:
 - Page impression: Banner is put one time in front of a Web user
 - CPM: Cost per thousand (Roman 1.000 sign) page impressions
 - CPC: Cost per click
- Actual cost varies, depending on market situation