
Multiple and Coordinated Views in Information Visualization

Maximilian Scherr

Abstract— Multiple views are not merely isolated separate views on data but mighty tools which often share a relationship. This rela-
tionship is brought to attention and utilized by coordination. Hence, in this paper I present an outline of the field of multiple coordinated
views, its reasons, anticipations, jargon and examples. Because of its general nature, a large portion of this text deals with abstract
formalizations, models and architecture descriptions. The latter is mainly revolving around user-generated coordination. Here, the
works of North and Schneiderman (Snap-Together Visualization), Boukhelifa (A Coordination Model for Exploratory Multiview Visual-
ization) and Weaver (Improvise) get major focus as they address coordination itself in different views and show development in their
field. To conclude this paper, a small collections of interesting uses of multiple and coordinated views is presented as well as a brief
discussion on recent issues.

Index Terms—multiple views, coordination, information visualization, abstract models, customized coordination

1 INTRODUCTION

Sucessfully aiding the seeking and discovery of information, two ma-
jor purposes of information visualization, not only asks for ingenious
ideas for a direct mapping of raw data to pixels. Diversity and the ar-
rangement of such generated views on data also play crucial roles, for
however natural or efficient a single specific view might seem, it does
not evidently have to fulfill these asumptions for every imaginable sit-
uation. This inherent bias can be countered by multiple views.

While multiple views on data appear as an improvement over a sin-
gle view, they also gives rise to various possible issues concerning
screen space, computer performance and user perception[2]. Addi-
tionally coordinating multiple views does not necessarily solve these
issues but it can compensate for them by facilitating the recognition of
previously hidden relationships within the observed data[2].

The concept itself is not quite a novelty. Nowadays an average com-
puter user frequently stumbles upon applications using coordinated
multiple views on a regular basis, including file browsers, text editors,
3D modelers and the likes. Though we have to keep in mind that these
applications usually do not fall into the category of scientific informa-
tion visualization, they do however show the same features concerning
multiple views and coordination. Even simple and common parts of an
application such as a text field with scrollbar can in fact be identified
as coordinated views.

In recent years the study of such multiple and coordinated views
(MCV) has variedly progressed and even spawned a conference (Coor-
dinated and Multiple Views in Exploratory Visualization) largely ded-
icated to this particular field of information visualization. The main
subject of this research paper will be an analysis of different con-
cepts and descriptions revolving around MCV, following a description
of (historic) ideas to formalize and generalize coordination based on
these classifications and an introduction of a small collection of spe-
cific MCV systems.

2 TERMINOLOGY AND GUIDELINES

In order to approach the following concepts a few general definitions
are provided here in this section. Along the lines of Baldonado et
al.[2] a single view shall be defined as the combination of a set of data
together with specifications on how to display this data. Imagine a
set of pairs, for example, representing time and temperature, size and
weight, or coordinates. This kind of data could now be displayed in
a single view by utilizing a list, a scatter plot, or some other hope-

• Maximilian Scherr is studying Informatics at the University of Munich,
Germany, E-mail: maximilian.scherr@campus.lmu.de

• This research paper was written for the Media Informatics Advanced
Seminar on Information Visualization, 2008/2009

fully appropriate technique. Such type of data representation used by
a single view is refered to by the term form[14].

Now, a system design in which two or more forms are used to dis-
play (the same) data is called multiform[14]. If two or more views en-
able users “to learn about different aspects of the conceptual entity”[2],
they may be called distinct views. This definition is in some way more
general but also more specific than multiform at the same time. For ex-
ample two scatter plots visualizing the same data in exactly the same
way would definitely neither classify as multiform, nor as distinct
views. However, if one of these scatter plots displays data in greater
detail, users could observe data at a higher granularity and might thus
learn about a different aspect. At first sight this may not seem to be in
direct accordance with the definition of distinct views but it is actually
wide enough to extend to such cases. In the case of multiform, I tend
to be believe that such a setup does not fall under the term’s defini-
tion since in both cases the same technique, that is a scatter plot, is
utilized. Argueably this depends on whether such modifications alter
a form enough to make it “different”.

According to Roberts[14] the term multiple views generally refers
to “any instance where data is represented in multiple windows”[14]
whereas Baldonado et al.[2] strictly require distinct views for a mul-
tiple view system. I will stick to the former, more general definition
here since it is less likely to interfere as easily with potentially stricter
definitions used in the following concepts.

2.1 Mutliple Views

The class of multiple views can now be further divided. Usually this
is done on grounds of the relationship between two so-called side-by-
side views. Systems which are only using two such side-by-side views
are called dual-view systems[14] but the following definitions are not
necessarily limited to such:

Overview & detail views use one view to display the whole or at
least a very large portion of the dataset and another view for
showing a part of the datasets in greater detail. The example
earlier of two scatter plots with different resolution falls into this
category[14].

Focus & context views is actually not too different from the above.
Apart from the semantical focus, stressing the detail before the
overview, a context view does not have to display as much data
as an overview, but only hint on the context. An example could
be a text reader using three views with one being the central,
big focus view, displaying several lines of text in an easily read-
able manner, and two others above and below, showing a cer-
tain amount of lines before and after respectively but in a size
not quite suited for long reading. As Roberts[14] points out this
technique is often used (in single view systems) together with



distortion, for example fish-eye magnification. There also ex-
ists an application of focus & context to virtual reality, called
“world in miniature”[17], where the contexting world is shown
as a miniature model within or possibly next to a full-sized real-
ity imitating viewport.

Difference views focus on highlighting differences in the observed
data, usually achieved by merging several views together[14].
An example for such usage is having two similar, yet different
images, wherein differing pixel regions are marked by color. The
Subclipse plugin for the popular software IDE Eclipse uses such
an approach for sourcecode merging in case of version control
conflicts.

Small-multiples are “shrunken, high-density graphics based on a
large data matrix”[18]. Encouraging comparison, this choice
of arrangement usually implies that the views use the same vi-
sualization form. They are “often narrative in content, show-
ing shifts in relatonship between variables as the index variable
changes”[18]. Several arranged miniature views representing
temperature or rainfall data on top of a map at different times
would be an example for this kind of multiple views.

This list is by no means exhaustive. Rather than that it merely rep-
resents common appearances of multiple views.

2.2 Coordination
Intuitively, whenever such relationships exist one would expect them
to be reflected while interacting with multiple views. In fact, according
to Roberts[14], when talking about multiple view systems, coordina-
tion is often implied.

The coordination of views requires specifications or mappings that
make changes in one view affect the others. Such mappings are speci-
fied by so-called coupling functions[2]. When exactly or under which
conditions these coupling functions are called has to be determined
separately in a so-called propagation model[2].

Coordination is apparent foremost when user interaction comes into
play. A very common coordination is called brushing, which means
that upon selection of elements in one view the same (or related) ele-
ments are simultaneously highlighted in other linked views[2], which
is especially useful for multiform views to find similarities and anoma-
lies in the data[14]. An extension relying on a repeated brushing tech-
nique has been described by Wright et al.[9]. The brush metaphor usu-
ally refers to how and how much data is selected[14]. When the data
to be visualized can be filtered or constrained by sliders, input fields,
drop-down menus and such, the term dynamic querying is used[14].
This can influence several views and also become part of coordina-
tion.

Next to linking data across views, navigational slaving constitutes
yet another common interaction technique[2]. This term describes a
relationship between views in which navigational actions in one view
are propagated to linked views. For example synchronized scrolling
in side-by-side difference views would be a form of two-way naviga-
tional slaving. As would be zooming, panning and similar, for exam-
ple, in a multiple view map application.

Navigational slaving is not restricted to a mapping of navigation
in one view to navigation in another. North[11] describes possible
occurrences of such case with a 2x3 taxonomy (see figure 1). This
definition of coordination is restricted to three types (on navigation
and data items), that are selecting items ↔ selecting items, navigat-
ing views ↔ navigating views and finally selecting items ↔ navigat-
ing views. Furthermore he classifies by whether the data collections
are different or the same. In the former case, relationships between
the collections have to be explicitly specified[11]. Imagine a setup
in which one view lists art museums and further information about
them, while another view shows a city map. For a coordination that
highlights the location of a selected museum in the map, it has to be
specified that the adress record in the museum’s information is to be
used and mapped to the other view. Same data collections already have
an implicit relationship[11].

Same collection

of information

Different collections

of information

Selecting items to items

Navigating views to views

Selecting items to navigating views

Fig. 1. “2x3 taxonomy of multiple window coordinations” (modified after
North[11], see diagram 1)

We have to keep in mind, that although interaction is the first that
comes into mind, coordination is more general. Whenever an event
changes one view (for example an automated update every minute)
and this change effects another view, coordination is partaking.

2.3 Issues and Guidelines
If used properly, multiple views can minimize cognitive overhead
compared to a data visualization via only a single view. Used in the
wrong way multiple views can have quite the opposite effect[2]. Bal-
donado et al.[2] identify the following aspects that influence utility of
an MCV system and could become causes of issues:

• Learning time and effort required to use the system properly.

• Load on user’s working memory when using the system.

• Comparison effort required when using the system.

• Context switching effort required when using the system.

• Computational power required by the system.

• Display space required by the system.

• Design, implementation and maintenance resources required by
the system.

In order to avoid that, several guideline rules have been presented
by Baldonado et al.[2]. The rule of diversity (“Use multiple views
when there is a diversity of attributes, models, user profiles, levels of
abstraction, or genres.”), the rule of complementary (“Use multiple
views when different views bring out correlations and or disparities.”),
the rule of decomposition (“Partition complex data into multiple views
to create manageable chunks and to provide insight into the interac-
tion among different dimensions.”), and the rule of parsimony (“Use
multiple views minimally.”) address the fundamental conditions under
which sensible usage of multiple views is recommended, or as Baldon-
ado et a.l[2] put it, they cover the task of selecting views.

The second set of rules covers view presentation and interaction,
which involves coordination: the rule of space/time resource opti-
mization (“Balance the spatial and temporal costs of presenting multi-
ple views with the spatial and temporal benefits of using the views.”),



Table 1. Summary of guideline rules (modified after Baldonado et al[2].)

Rule of ...
Major positive
impacts on utility

Major negative
impacts on utility

... diversity memory

learning,
computational
overhead, display
space overhead

... complementary
memory,
comparison,
context switching

learning,
computational
overhead, display
space overhead

... decomposition
memory,
comparison

learning,
computational
overhead, display
space overhead

... parsimony

learning,
computational
overhead, display
space overhead

memory,
comparison,
context switching

... space/time resource
optimization

learning,
computational
overhead, display
space overhead

memory,
comparison,
context switching

... self-evidence
learning,
comparison

computational
overhead

... consistency learning,
comparison

computational
overhead

... attention management
memory, context
switching

computational
overhead

the rule of self-evidence (“Use perceptual cues to make relationships
among multiple views more apparent to the user.”), the rule of consis-
tency (“Make the interfaces for multiple views consistent, and make
the states of multiple views consistent.”), and the rule of attention man-
agement (“Use perceptual techniques to focus the user’s attention on
the right view at the right time.”)

When applying these rules tradeoffs have to be considered. Apply-
ing the rule of parsimony, for instance, might put a strain on the user’s
ability to compare relevant data. For a summary of the rules and their
possible effects on a MCV system see table 1.

3 APPROACHES TO ABSTRACT MODELS

Now that multiple views and coordination have been formally intro-
duced I will go about introducing some of the major ideas researchers
have come up with in recent years to generalize MCV. Not only can
such formalization help implementing visualization frameworks them-
selves, it also provides a means to allow user defined coordination and
thus customization of MCV systems.

3.1 North and Shneiderman.: Snap-Together Visualization
The first approach is the Snap-Together Visualization described by
North and Shneiderman.[12] It tries to deal with the issue that users
might be interested in coordinations not foreseeable by a developer
for all possible tasks. It focuses mainly on information exploration
and not manipulation/editing tasks.[12]

3.1.1 Ideas and Goals
Snap-Together Visualization both acknowledge user specific needs
and “give users the coordinated multiple-view interfaces they want,
yet, at the same time, save designers from endless development of
coordinations.”[12] Especially at the time of this system’s devising
most MCV systems had been static. Adding new, maybe not so com-
mon coordination required custom programming. The goals of this
approach are not only simplified custom coordination, but also easy
integration into projects, making it easy for developers to add “snap-
ability” to their application. If actually performed this could give users
a wide range of third party visualizations for utilization in their infor-
mation exploration tasks[12].

3.1.2 Model and Terms
The model of North and Shneiderman’s approach is based on the re-
lational database model, which holds information, the basis for visu-
alization, view generation and coordination. One information unit is
called object and is represented as tuple inside of the database. Build-
ing on top of a relational database offers a main advantage in it having
already formalized concepts such as unique identifiers (primary key)
and relationships. We will see, that it also provides good methods to
share queries when coordinating and updating views.

In this system the term visualization is used equally to the defini-
tion of view in section 2, a visual representation of a set of objects.
This visualization can be filled with life by queries on the underlying
database, which load the requested data.

North and Shneiderman present three major categories of user ac-
tions, namely select (for example clicking, hovering et cetera), navi-
gate (for example scrolling, zooming et cetera) and query (as described
above).

Finally, coordination is here defined on user actions on objects
(again a limitation compared to the general definition in section 2)
and their mapping across visualizations (views).

3.1.3 Usage
At the basis of this system’s usage lies an application that serves as
frontend to a relational database. Additionally creating and opening
views as well as coordination are all integrated into this application
and can be managed there by the user. This application may be re-
garded as a helper application for (third party) visualization applica-
tions.

The standard procedure for using the system is described by North
and Shneiderman[12] as follows:

1. A user queries (or in the simplest case merely chooses to retrieve
a table of) the database and thus creates a view. Existing views
can also be updated with new data by queries. A drag and drop
mechanism is employed to do this, as well as throughout most
subsequent tasks. I will not discuss the exact usage details here.

2. Coordination is established by “snapping visualizations to-
gether” with help of the helper application. At this point the
user has to choose what actions to coordinate. Again these coor-
dinations can be modified later on.

3.1.4 Architecture
“[Snap-Together Visualization] is a centralized software system that
acts as an intermediary among the visualization tools and the
database.”[12] The system is supposed to be informed by visualiza-
tion tools about their snap-able actions upon initialization.

Actual snapping is performed between two visualizations visa and
visb by a mapping of the form

(visa,actiona,ob jectida)⇔ (visb,actionb,ob jectidb)

where actiona and actionb are user defined actions to be coordi-
nated and ob jectida and ob jectidb are unique object identifiers, which
in most cases are expected to be equal, “as in primary-key to foreign-
key joins.”[12]

Such information is stored in a coordination graph, the nodes of
which are visualizations and the links of which are the described
snap mappings for incident visualization nodes. Through inter-process
communication the system is notified of user actions by the visualiza-
tion (application), upon which this coordination graph is traversed and
communicates the mapped actions to the snapped visualizations.

As mentioned earlier, applications have to be made snap-able before
any of the described tasks can be performed. According to the authors,
the role of their system can be compared to copy-and-paste features
which are controlled by a centralized process in the background.

Such a system requires applications to implement simple hooks for
interoperability. In case of Snap-Together Visualization these hooks



are initialization (notification of available user actions for coordina-
tion), action notification (propagating of events upon user action), ac-
tion invocation (interface to methods resulting in an action on a given
object) and finally load (reading and displaying given data).[12]

3.1.5 Evaluation
When designing such system directed at end-user utilisation it is of
utter importance to evaluate acceptance and performance in user stud-
ies. As the authors mention in a study on their Snap-Together Vi-
sualization (or Snap), it is important to study its use for evaluation
of usability, benefit, discovery “of potential user interface improve-
ments”, and gaining of “a deeper level of understanding about users’
ability to understand, construct, and use coordinated-view strategies in
general”[13].

This study investigated both, construction of MCV interfaces by
users, and its subsequent operation. Participants were given differ-
ent tasks to fullfil. While observing cognitive trouble spots and user
interface problems the team measured the participant’s background in-
formation, learning time, success, and time to completion[13].

In short, the results of this user-study are:

• Participants were excited to use the system.

• They were overall quick to learn it.

• Several felt satisfaction about being able to create exploration
environments and with the ability to effectively use a coordinated
visualization.

• They state that exploring with their custom-built system was “ef-
fortless compared to the standard tools they [were] used to.”[13]

• A variety of solution processes for the given tasks indicated the
ability to creatively handle the system, that is adjust them to their
very own personal needs.

Despite some issues concerning the user interface (that I have cho-
sen not to describe in detail here anyway) the overall and arguably
most important result of this study was that the participants “did not
have problems grasping the cognitive concept of coordinating views.
They were able to generate designs by duplication and by abstract task
description.”[13]

3.2 Boukhelifa et al.: A Coordination Model for Ex-
ploratory Multiview Visualization

While Snap-Together Visualization provides easy to use methods for
building own coordination designs, it is limited by its centering on a
relational database backend. Exploratory visualization supports more
types of interactions than Snap provides and thus requires a wider
approach[3].

Boukhelifa et al.[3] introduce a model that, although similar to
Snap-Together Visualization in some parts, “handles coordination
from a more general viewpoint and takes in consideration exploratory
visualization needs for rich and varied user interactions.”[3]

3.2.1 Coordination in Detail
Acknowledging the need for freedom of coordination and an abstract
definition thereof, Boukhelifa et al. define essential parts or design
issues of a coordination for their system as follows[3]:

Coordination entities: This defines the exact subjects of coordina-
tion, for instance view, parameter, data, process, event, and of
course aspects of the displaying window.

Type: Very close to the concept of a type in a programming language
coordinations have a type as well, be it primitive or complex.
Translation between types might also become necessary.

Chronology: This aspect covers a coordination’s lifetime, dealing
with how long a coordination persists and scheduling, dealing
with matters such as synchronism (or asynchronism).

Scope: The scope of a coordination restricts in terms of link-ability,
for example whether any arbitrary entity can be connected.

Granularity of links: This looks at how many entities and how many
views there are in a coordination, as well as how many links an
“entity contributes to coordination”.

Initialization: How a coordination is created (also how links between
entities are created) is contained in this aspect.

Updating: Several update models can be applied, for instance user
initiated updating, lazy updating, or greedy updating. Updates
can lead to inconsistencies that have to be resolved, or even bet-
ter, avoided from the beginning.

Realization: This aspect decides on general realization matters such
as if and how to convey which entities are linked to each other
(for example by lines) as well as how users coordinate and inter-
act.

3.2.2 Model
Ideally the model “should be flexible, adoptable, extensible and foster
better visual exploration.”[3] Additionally, a large degree of freedom
to be able to describe all sorts of coordinations is desired, as well as
the facilitation of their testing.

At the center of Boukhelifa et al.’s model lie the so-called coor-
dination objects, which reside in a coordination space and manage
(coordination) entities. For each type of coordination a single object
is considered to be present, for instance, one object for selecting, re-
sponsible for selection-related coordinations (such as brushing), and
one for rotation, responsible for all rotation-related coordinations[3].

Views are coordinated when they are linked to a common commu-
nication object. Figure 2 shows two views and two (different) coordi-
nation objects, which are linked to the maximal possible extent. This
linking has two forms in the authors’ model, namely translation func-
tions (see fi, j with i, j ∈ {1,2} in figure 2) and notifications, which
are invoked in case an event makes changes to the linked coordination
object[3].

view 1 view 2

coordination
object 1

coordination
object 2

Coordination Space

event 1 event 2

f
2,1

f
1,2

f
1,1

f
2,2

notify
1,1

notify
2,2

n
o
tify

1,2 n
o
ti
fy

2,
1

Fig. 2. Example of Boukhelifa et al.’s abstract model (modified after
Boukhelifa et al.[3], see figure 1)

The authors stress the model’s dynamic nature by stating that
“views may be added and removed without other views that also access
the same coordination object necessarily having knowledge of this ac-
tivity. Importantly, views do not need to know about other views in the
coordination.”[3]

They go one step further by extending the abstract model applying
it to the several stages of the so-called dataflow model. The dataflow
paradigm for visualization described by the authors puts data at the
first stage or layer. This data is enhanced, then mapped into an ab-
stract visualization object. Finally this object can be rendered and
subsequently transformed however often it is necessary[4][5]. Apply-
ing the earlier, abstract coordination model to the dataflow paradigm,



original
data 1

subset 1

abstract
visualization

object 1

image 1view 1

EC Subspace

Subset, filter,
enhance

...
MC Subspace

Mapping
techniques

...
RC Subspace

Rendering
algorithms

...

original
data 2

subset 2

abstract
visualization

object 2

image 22view

TC Subspace

GUI controls

...

Coordination Space

Enhance Map Render Transform

fE 2
fM2

fR 2

fT 2

fE 1
fM1

fR 1
fT 1

Event

Notify

Fig. 3. Boukhelifa et al.’s layered model (modified after Boukhelifa et al.[3], see figure 3)

coordination can occur at any of these layers (see figure 3). However,
it typically tends to happen at the mapping and rendering stages[3].

Since view parameters and coordination object parameters may not
be identical, abstract parameters are introduced, which can be passed
to translation functions (which in turn convert abstract parameters to
view parameters). By these abstract parameters the coordination space
can be divided into “four varieties of coordination sub-spaces”[3] (see
figure 3).

What modifies those abstract parameters? Adequately typed events
do, be they user action originated (in which case the views generate
them) or occur automatically as result of some background process.
As described earlier, notifications are responsible for updating linked
views in response to events. It is not only mandatory to define trans-
lation functions to each view, it is also mandatory for views “to be
registered to receive notify events.”

After an event has occurred, the notify handler of a linked view is
triggered and finally translation functions (according to the coordina-
tion object of origin) are called[3].

3.3 Weaver: Improvise
I have briefly introduced two approaches to MCV, one being simple
and limited by its coordination actions and database, the other being
a rather theoretical and abstract model. The approach presented by
Weaver[19], called Improvise, adopts some traits of both and tries to
balance between user coordination tradeoffs.

3.3.1 Goals
According to Weaver[19] visualization systems allowing for user con-
trolled coordination are either limited in coordination options but on
the other hand let users do this in a simple way (by offering a pre-
defined set of coordinations) or flexible but on the other hand make
it more difficult for users to coordinate (by requiring them to write
coordination scripts). Thus, “the primary goal of Improvise is to en-
hance data exploration by offering users fine-grain control over the
appearance of visualized data while preserving their ability to work
quickly and easily.”[19] To do this, the author proposes a visual ab-
straction language and a coordination mechanism based on shared-
objects, which is combined with indirect coordination through a query
mechanism[19].

3.3.2 Architecture
Improvise has two concepts that govern coordination, one being direct
the other being indirect. The concept associated with direct coordina-
tion is called live properties.

Coordination in Improvise is performed on controls, for instance
views, sliders et cetera. For each of these controls one or more live

properties are defined. A single (live) property can bind to at most
one shared object, called variable here (which can, by definition of a
shared object, be bound by an arbitrary number of different live prop-
erties). A property that only accesses its bound variable is called pas-
sive property, one that also modifies is called active property[19] (see
figure 4).

Controls are thus never directly modified (by variables) within the
coordination mechanism. Instead variable changes are propagated to
controls via changes of live properties (and vice versa for the rela-
tionship between controls and variables)[19]. Similar to properties
in object-oriented programming, live properties are a way to conve-
niently access the control’s data from the outside, and in this case data
(at least that data, which is relevant for coordination) is actually stored
in the property for the control (for instance a slider’s position). Live
properties are strongly typed and initialized with a default value in
case of no variable binding[19]. If we regard control and properties as
a single entity, view and variable as coordination object, similarity to
Boukhelifa et al.’s abstract non-layered model becomes evident.

Control Property
(active)

Property
(Passive)

ControlVariable

1

4

2

3

3 4

Fig. 4. Direct coordination (modified after Weaver[19], see figure 1)

Weaver describes the scenario depicted in figure 4 as follows[19]:

1. “A control modifies the value of one of its (active) live properties
in response to interaction.”

2. “The live property assigns the new value to its bound variable.”

3. “The variable sends a change notification to all live properties
bound to it.”

4. “The live properties notify their respective parent controls of the
change [and the] controls update themselves appropriately.”

While live properties are a concept for direct coordination, indirect
coordination can be achieved by so called coordinated queries, which
“is a visual abstraction language based on the relational database
model.”[19] Here we can see a similarity to Snap-Together Visualiza-
tion, yet the concept of coordinated queries appears to be more flex-
ible. The main part of the abstraction language are query operations



that are made up by expressions. “An expression is a tree of operators
that calculates the value of an output field using the fields of a [sic]
input record.”[19]

The Improvise implementation provides users with a dedicated ex-
pression editor, enabling them to construct complex queries from a
variety of operators: function operators, value operators, attribute op-
erators, aggregate operators, constant operators, index operators, and
finally variable operators1.

The key to indirect coordination lies in the variable operators, which
during evaluation “take on the current value of their corresponding
variable.”[19]. A central database, called lexicon stores data, query
operations et cetera. Its elements are called lexicals.

Variable Variable

1 2 3 4

Lexical

Fig. 5. Indirect coordination (modified after Weaver[19], see figure 3)

Weaver describes indirect coordination (situation in figure 5) as
follows[19]:

1. “An upstream object propagates a value change to a variable.”

2. “The variable notifies all lexical values that contain expressions
which reference the variable.”

3. “Each expression notifies variables to which it is assigned as a
value.”

4. “The variable sends a change notification to all downstream ob-
jects. Upstream and downstream objects can be live properties
(as in [figure 4]), or other lexical values.”

Figure 6 shows an example of direct coordination for a view that
displays data in a scatterplot and two axis control views.

t-axis p-axistx-view

range rangex-range y-range

t p

t-axis

p-axis

tx-view

0.0

3.5

Fig. 6. Direct coordination example (modified after Weaver[19], see fig-
ure 5)

1Please refer to Weaver’s paper[19] for detailed information.

3.3.3 Results
According to Weaver[19] “highly-coordinated visualizations appear to
be much easier to build in Improvise than other visualization systems.”
He attributes this to indirect coordination, that links every aspect of a
MCV system together in a flexible manner. The system was fully im-
plemented, however, as of the time of writing his paper[19] no com-
parative user studies had been conducted yet.

4 PROBLEM-SPECIFIC APPLICATIONS OF MCV
Whether all the approaches in the previous section have actually been
incorporated into MCV systems or not, one reason I chose to discuss
them is, that they present what has to be considered when building
a coordinated multiple view visualization and how coordination there
can be improved.

Hence, while not directly related to the previous section, I tried to
compile a small overview of problem-specific applications of MCV
for this last section, to give an idea of what tasks it has been used for
explicitly, and what research has resulted in.

4.1 Da Silva Kauer et al.: An Information Visualization Tool
with Multiple Coordinated Views for Network Traffic
Analysis

Fig. 7. Screenshot showing brushing (see da Silva Kauer et al[6]., figure
2)

The system by Kauer et al. was designed for network traffic analy-
sis. It uses the PRISMA[8] visualization framework and represents a
typical MCV design with static coordination between views. As you
can see in figure 7, several views containing different types of visual-
ization are used.

4.2 Shimabukuro et al.: Coordinated Views to Assist Ex-
ploration of Spatio-Temporal Data: A Case Study

Fig. 8. Window placement reflects location on map (see Shimabukuro
et al.[15], figure 7 )

The system by Shimabukuro et al.[15], is interesting for applying a
novel way of visualizing temporal data, and for using multiple views



enabling them to effectively combine this data with spatial data. For
example, the user sees a map from which he chooses locations, to
which certain temporal data has been collected (in this case climate
data). Corresponding views are then arranged in a way that their po-
sition on screen reflects their locations’ arrangement on the map (see
figure 8).

4.3 Masui et al.: Multiple-View Approach for Smooth Infor-
mation Retrieval

Fig. 9. Screenshot showing all four different views (see Masui et al.[10],
figure 1)

Masui et al.[10] describe a tourist information system (for Nara,
Japan) supporting tourists with a three-dimensional map view showing
points of interest, category views and lists to find points of interests.
One coordination is for instance, that details about data objects in the
three-dimensional view are displayed in a separate window when com-
ing into proximity of the view’s center(see figure 9). It supports search
for points of interest by employing real world search strategies, that is
with the help of multiple and coordinated views “any vague knowledge
about the data can be utilized to narrow the search space.”[10]

4.4 Do Carmo et al.: Coordinated and Multiple Views in
Augmented Reality Environment

Fig. 10. Two coordinated scatter plots and in the top-left corner coordi-
nated details (see do Carmo et al[7]., figure 10)

Combining multiple and coordinated views with augmented reality
gives new display options concerning arrangement as well as new user
interactions (such as navigation by perspective change). Results of a
user study, conducted by do Carmo et al.[7] on their system, showed
that most users did not encounter major difficulties adapting to the
rather unusual setup. To manipulate views, the system relies on a
set of markers and their handling(see figure 10). Participants of the
user study reported to enjoy the mixture of virtual and real objects,
the immersive environment in general, and profited from freedom of
movement and manipulation.

5 DISCUSSION AND FINAL WORDS

In this paper I have tried to introduce the field of multiple and coordi-
nated views. Though the abundance of systems using MCV may have
prevented me from choosing the best ones, I hope I was able to give a
cross-section through the field.

What struck me the most was that considering that some of the
presented ideas are nearly ten years old, progress, especially for cus-
tomized coordination in commercial systems seems to have been slow.
In a recent paper Andrienko and Andrienko[1] attribute this to exist-
ing tools and approaches being “insufficiently suited to real-life prob-
lems.”

To me this comes as a surprise, as approaches like the ones de-
scribed in section 3 have become more and more general, in fact gen-
eral enough to cover most cases or at least more and more cases as
time passes. Apparently slow processing of large data volume, or in
other words, non-scalability of MCV systems is the main cause for
Andrienko and Andrienko’s judgement. With more data to be visu-
alized visualization itself and coordination come to a limit. In fact,
while researching I also felt that most approaches fail to address this
issue thoroughly enough.

What their paper also proposes is a deviation from Shneiderman’s
apparently (in the field of MCV) widely followed information seek-
ing mantra “overview, zoom and filter, details-on-demand”[16]. They
state that maybe applying “analyse first - show the Important - zoom,
filter and analyse further - details on demand” (the visual analytics
mantra) could be a suitable solution as this procedure “stresses the fact
that fully visual and interactive methods do not properly work with big
datasets.”[1]

For me all the many different, yet not too different formalization
approaches and visualization systems give off a general atmosphere
of dissatisfaction, and in fact I have personally not come across any
commercial application allowing for the described levels of customiz-
ability. In the end, one still has to decide what visualization method is
best suited for a specific problem, which is not an easy task to begin
with[1].

Despite these issues, multiple and coordinates views are still a hot
topic and I anticipate further research and development in this area.

REFERENCES

[1] G. Andrienko and N. Andrienko. Coordinated multiple views: a criti-
cal view. Coordinated and Multiple Views in Exploratory Visualization,
International Conference on, 0:72–74, 2007.

[2] M. Q. W. Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for
using multiple views in information visualization. AVI ’00: Proceedings
of the working conference on Advanced visual interfaces, pages 110–119,
2000.

[3] N. Boukhelifa, J. Roberts, and P. Rodgers. A coordination model for ex-
ploratory multiview visualization. In Coordinated and Multiple Views in
Exploratory Visualization, 2003. Proceedings. International Conference
on, pages 76–85, 2003.

[4] S. Card, J. MacKinlay, and B. Shneiderman. Readings in Information
Visualization: Using Vision to Think. Series in Interactive Technologies,
volume 340.

[5] E. Chi. A taxonomy of visualization techniques using the data state refer-
ence model. Proceedings of the IEEE Symposium on Information Vizual-
ization, 2000.

[6] A. L. da Silva Kauer, B. S. Meiguins, R. M. C. do Carmo,
M. de Brito Garcia, and A. S. G. Meiguins. An information visualization
tool with multiple coordinated views for network traffic analysis. Infor-
mation Visualisation, International Conference on, 0:151–156, 2008.

[7] C. do Carmo, R. Melo, B. Meiguins, A. Meiguins, S. Pinheiro,
L. Almeida, and P. Godinho. Coordinated and multiple views in aug-
mented reality environment. In Information Visualization, 2007. IV’07.
11th International Conference, pages 156–162, 2007.

[8] P. I. A. Godinho, B. S. Meiguins, A. S. G. Meiguins, R. M. C. do Carmo,
M. de Brito Garcia, L. H. Almeida, and R. Lourenco. Prisma - a mul-
tidimensional information visualization tool using multiple coordinated
views. Information Visualisation, International Conference on, 0:23–32,
2007.



[9] L. Lever and M. McDerby, editors. Click and Brush: A Novel Way of
Finding Correlations and Relationships in Visualizations, University of
Kent, UK, June 2005. Eurographics Association. (Electronic version
www.diglib.eg.org).

[10] T. Masui, M. Minakuchi, I. George R. Borden, and K. Kashiwagi.
Multiple-view approach for smooth information retrieval. In UIST ’95:
Proceedings of the 8th annual ACM symposium on User interface and
software technology, pages 199–206, New York, NY, USA, 1995. ACM.

[11] C. North. Generalized, robust, end-user programmable, multiple-window
coordination. Research Proposal, University of Maryland Computer Sci-
ence Dept, 1997.

[12] C. North and B. Shneiderman. Snap-together visualization: Coordinating
multiple views to explore information. Technical report, 1999.

[13] C. North and B. Shneiderman. Snap-together visualization: Can users
construct and operate coordinated visualizations? International Journal
of Human-Computers Studies, 53(5):715–739, 2000.

[14] J. C. Roberts. State of the art: Coordinated & multiple views in ex-
ploratory visualization. Coordinated and Multiple Views in Exploratory
Visualization, International Conference on, 0:61–71, 2007.

[15] M. H. Shimabukuro, E. F. Flores, M. C. F. de Oliveira, and H. Levkowitz.
Coordinated views to assist exploration of spatio-temporal data: A case
study. Coordinated and Multiple Views in Exploratory Visualization, In-
ternational Conference on, 0:107–117, 2004.

[16] B. Shneiderman. The eyes have it: A task by data type taxonomy for in-
formation visualizations. Visual Languages, IEEE Symposium on, 0:336,
1996.

[17] R. Stoakley, M. J. Conway, and R. Pausch. Virtual reality on a wim:
interactive worlds in miniature. pages 265–272, 1995.

[18] E. R. Tufte. The Visual Display of Quantitative Information. Graphics
Press LLC, 2nd edition, 2001.

[19] C. Weaver. Building highly-coordinated visualizations in improvise. In-
formation Visualization, IEEE Symposium on, 0:159–166, 2004.


