10. Presentation Approaches I

Dealing with the presentation problem

Dr. Thorsten Büring, 10. Januar 2008, Vorlesung Wintersemester 2007/08

Outline

- Presentation problem
- **≡**Zoomable user interfaces (ZUIs)
 - \equiv Development history
 - \equiv Space-scale diagrams
 - **≡** 2.5D
 - \equiv Advanced ZUI designs
 - \equiv Orientation in ZUIs
- **■**Overview+detail interfaces
 - \equiv Abstract overviews
 - \equiv Performance issues
 - \equiv View coordination

\equiv View Layout

 \equiv Zoom factors

Presentation Problem

- \equiv Very often information spaces have to be displayed, which are significantly
 - larger than the screen size
 - \equiv Too many data cases
 - \equiv Too many variables
- ■Potential techniques to maximize the number of information objects that can be displayed
 - \equiv Data encodings (see lectures 3 & 4)
 - \equiv Interaction and view transformations
 - \equiv Hybrid approaches

Presentation Problem

 \equiv Most common work around: scrolling interfaces

Advantages

- \equiv Many users are familiar with scrollbars
- \equiv Navigation at different speed
- \equiv Thumbs show position and ratio of information space and view size
- \equiv Have been found effective to move small distances

Disadvantages

- \equiv Only horizontal and vertical shifts
- \equiv Scrollbars usually do not preview the content of the off-screen space
- \equiv Take away screen space
- \equiv Limited to linear navigation
- \equiv Does not scale (search times and interaction sensitivity increase)

Presentation Problem

 \blacksquare Interaction and view transformations

- \equiv Zoomable user interfaces
- \equiv Overview+detail interfaces
- \equiv Focus+context interfaces (upcoming lecture)

Outline

- \blacksquare Presentation problem
- Zoomable user interfaces (ZUIs)
 - \equiv Development history
 - \equiv Space-scale diagrams
 - **≡** 2.5D
 - \equiv Advanced ZUI designs
 - \equiv Orientation in ZUIs
- **■**Overview+detail interfaces
 - \equiv Abstract overviews
 - \equiv Performance issues
 - \equiv View coordination
 - \equiv View Layout
 - \equiv Zoom factors

Zoomable User Interfaces

- ≡ ZUIs aka multiscale interface
- "Navigation in information spaces is best supported by tapping into our natural spatial and geographic ways of thinking" (Perlin & Fox 1993)
- "By moving through space and changing scale the users can get an integrated notion of a very large structure and its contents, and navigate through it in ways effective for their tasks" (Furnas & Bederson 1995)
- \blacksquare Data objects must be organized in space and scale
- \equiv Users can manipulate which part of the information space is shown, and at what scale
 - \equiv Panning: movement of the viewport over the information space at a constant scale
- EDue to non-linear navigation ZUIs develop their full potential as the size of the information space grows

Raskin Zoom Demo

■http://rchi.raskincenter.org/demos/zoomdemo.swf

Development History

- 1978 Spatial Data Management System (SDMS) (Donelson 1978)
- ■Visionary system for visualizing (and zooming) visual database representations
- \blacksquare Relied heavily on custom hardware
 - \equiv Rear-projected color television display
 - \equiv Octophonic sound system
 - Chair with isometric joysticks, touch-sensitive Tablets and a digital lapboard

Development History

- \equiv 1993 Pad, the first multiscale interface (Perlin & Fox 1993)
- Alternative to the Windows Paradigm
- EVisualizes an infinite two dimensional information plane populatec with information objects the users can interact with (e.g. text files personal calendar...)
- \equiv Important concepts
 - \equiv Portals as customizable views to facilitate navigation
 - \equiv Semantic zooming (will be discussed later on)
 - \equiv Designed to run on standard hardware
- \equiv Screenshot shows quarterly report displayed using Pad along with
 - portals to provide magnified views of details

Development History

- ≡ 1994 Pad++ (Bederson & Hollan 1995), successor of Pad
- \blacksquare Mostly technical enhancements
- \equiv Smooth zooming with hundreds of thousands information objects
- Implemented in C++
- ESupposed to support platforms ranging from workstations to PDAs and set-top boxes (scalability of ZUIs!)
- Improved platform independency was only achieved by later ZUI toolkits
 - \equiv Jazz (2000), Java
 - \equiv Piccolo (2004), Java, .NET C#, compact framework
- Piccolo: http://www.cs.umd.edu/hcil/jazz/
- ■Movie Pad++

Recent Example: Photosynth

http://labs.live.com/photosynth/default.html

Movie

≡Furnas & Bederson 1995

 \equiv Diagrams to understand and model multiscale interfaces

■Basic idea

- \equiv 2D image represents information space
- \equiv Construct diagram by creating copies of the 2D image at each possible scale and stacking them up to form an inverted pyramid
- ■Two axes u1 and u2 represent spatial dimensions of the image
- ■Vertical v axis represents scale (magnification of the image from 0 to infinity)

Figure 1. The basic construction of a Space-Scale diagram from a 2D picture.

Property I: viewing window

- \blacksquare Fix-size window which is moved through the 3D space of the diagram
- \blacksquare Models all possible views, which can be achieved by zoom and pan
- \blacksquare Note: alternative ZUI model could represent space as a fixed 2D plane on which the size of the view window is manipulated

Figure 2. The viewing window (a) is shifted rigidly around the 3D diagram to obtain all possible pan/ zoom views of the original 2D surface, e.g., (b) a zoomed in view of the circle overlap, (c) a zoomed out view including the entire original picture, and (d) a shifted view of a part of the picture.

Furnas & Bederson 1995

(a)

■Property II

- \equiv A point in the original 2D picture becomes a ray in this space-scale diagram
- \equiv Hence regions of the 2D picture becomes generalized cones in the diagram

■Property III

- \equiv The only meaningful contents of the space-scale diagram are properties invariant under a shear
- \equiv Do not try to read too much out of the diagram!

Figure 3. Points like p and q in the original 2D surface become corresponding "great rays" p and q in the space-scale diagram. (The circles in the picture therefore become cones in the diagram, etc.)

- Study basic pan-zoom trajectories
- \equiv (a) panning: position changes, scale remains constant
- ■(b) pure zoom: central position remains constant, scale changes
- \equiv (c) zoom-around: zoom is centered around some fixed point other than the senter of the window (in the example point q)

Figure 6. Basic Pan-Zoom trajectories are shown in the heavy dashed lines:. (a) Is a pure Pan,. (b) is a pure Zoom (out), (c) is a "Zoom-around" the point q.

- ∃ Joint pan-zoom trajectory
- \equiv Use case: automatic navigation to a pre-defined point
- Naive approach: calculate pan and scale distance separately and execute them in parallel - does not work!

Reason

- \equiv Pan is linear
- \equiv Zoom is logarithmic
- ESpace-scale diagram shows how the trajectory s needs to be modeled
- View monotonically approaches a point in both pan and zoom
- E Scale factor z must change hyperbolically with the panning of x

Figure 7. Solution to the simple joint pan-zoom problem. The trajectory s monotonically approaches point 2 in both pan and zoom.

- Shortest path between two points
- \equiv Not a straight line, i.e. no pure panning!
- Remember: zoom is logarithmic, i.e. provides exponential accelerator for navigating very large spaces
- \blacksquare Arrows of the trajectories represent units of cost
- E Diagram shows: to travel a vast distance the following strategy is fastest
 - \equiv Zoom out to a scale at which the old and the target position are close together
 - \equiv Short pan
 - \equiv Zoom back in

Figure 8. The shortest path between two points is often not a straight line. Here each arrow represents one unit of cost. Because zoom is logarithmic, it is often "shorter" to zoom out (a), make a small pan (b), and zoom back in (c), than to make a large pan directly (d).

Zoom Accelerator

\blacksquare Power of ten

- \equiv 10 million light years from the Earth travel in 40 zoom steps to the protons of an oak leaf in in Tallahassee, Florida
- http://micro.magnet.fsu.edu/primer/java/scienceopticsu/
 powersof10/index.html

10 million light years away from the Milky Way.

2D, 2.5D and 3D

- \equiv ZUIs are NOT 3D but 2.5D applications
- \blacksquare Why not make them 3D?
 - ∃ Historical reason: developers of seminal ZUIs wanted to avoid special hardware requirements (by now 3D chips are standard)
 - \equiv Simplicity 3D systems are usually hard to navigate using current 2D display and input device technology
- ■Still, it is hypothesized that high-quality 3D interfaces may better exploit the human capabilities of spatial cognition and thus can improve user performance
- \blacksquare Mixed empirical results in previous research

2D, 2.5D and 3D

- Example evaluation: physical and virtual systems to retrieve documents in a 2D, a 2.5D, and a 3D setting (Cockburn & McKenzie 2002)
- \equiv Results indicate performance advantage for 2D layout to locate images of web pages
- \equiv Participants also found the higher dimensional interfaces more cluttered and less efficient

Smooth Zooming

 \equiv Older systems only provide a two-level zoom or navigation via coarse jumps

- **≡**Smooth continuous zooming
 - \equiv More demanding to implement
 - \equiv Helps the users to preserve their orientation during navigation
 - \equiv Users build a mental map of the information space
 - \equiv May improve user satisfaction via hedonic qualities flying through space metaphor

Semantic Zoom

Most common is geometric zoom: simply magnifies objects
 Semantic zoom: objects change their appearance as the amount of screen real estate available to them changes
 Semantic zoom provided by a directory browser implemented

with Pad++ (www.cs.umd.edu/hcil/pad++)

Figure 11. Semantic Zooming. Bottom slices show views at different points.

Goal-Directed Zoom (GDZ)

Semantic zooming: users zoom in until the target objects shows the desired representation
Goal-directed zoom: users choose a representation of an object and the change in scale and translation is automatically performed by the system (Woodruff et al. 1998b)

Orientation in ZUIs

- \equiv A common problem of ZUIs: the lack of context
- \equiv Continuous clipping of orientation cues during zooming
- \equiv Amount of context needed is hard to predict
- \blacksquare Depends on variables such as
 - \equiv Type and ordering of the information space
 - \equiv The users' familiarity with the information space
 - \equiv The task the users want to accomplish
- Example city map navigation: context needed by local citizen versus a first-time visitor
- \equiv Most straightforward way to rediscover context in ZUIs: zooming out
 - \equiv May also refresh the users' mental model of the information space
 - \equiv But: frequent zoom-outs can be tedious
 - \equiv Provide fast and precise interaction design to minimize the required effort

≡Jul & Furnas 1998

- ■More severe orientation problem for large or infinite multiscale spaces
 - \equiv Users zoom into white space between information objects until the viewport goes completely blank
 - \equiv Blank screen could mean:
 - \equiv There are no more object to be found in that direction -> zoom out
 - \equiv There are objects to come, but they are too far away to be visible -> zoom in
 - \equiv What to do?

Add multiscale residues

- \equiv Landmarks for each information object are drawn across scale (think of it as a beacon)
- \equiv Blank screen always means that there are no more objects in that direction
- \equiv Problem: clutter of multiscale residues
- \blacksquare Apply hierarchical clustering to reduce clutter
- Based on spatial proximity

Problems

- \equiv Where should a landmark be located?
- \equiv Geometric center of a cluster? Meaningful?
- \equiv Most representative object? How to identify?
- ∃ How many levels of the hierarchy should be displayed when? Again, can cause clutter...

LMU Department of Media Informatics

thorsten.buering@ifi.lmu.de

- EConcept of critical zones: provide residues of views not objects
- Single critical zone
 - \equiv Only views are highlighted, which contain objects
 - \equiv Bounding rectangle encloses all contained views
 - \equiv Dark rectangle means that the critical zone contains all objects in the world no sense to zoom out further
- \equiv Problem: where to zoom in on inside a critical zone?
- \blacksquare Trial and error strategy

- ■Improve navigation aid by showing multiple smaller critical zones
- ■At the same time limit the number of zones to not cause clutter
- \equiv M defines a size, above which a zone is split into smaller zones

.0

Outline

- \blacksquare Presentation problem
- **≡**Zoomable user interfaces (ZUIs)
 - \equiv Development history
 - \equiv Space-scale diagrams
 - **≡** 2.5D
 - \equiv Advanced ZUI designs
 - \equiv Orientation in ZUIs
- Overview+detail interfaces
 - \equiv Abstract overviews
 - \equiv Performance issues
 - \equiv View coordination

\equiv View Layout

 \equiv Zoom factors

Overview+Detail

- Overview+detail (O+d) interfaces are characterized by multi-window layout
 - \equiv Detail view presents details
 - \equiv Overview window provides overview information of the information space
 - \equiv Overview windows are usually also enhanced with visual cues
- ■O+d interface with field-of-view box give users direct and constant feedback on their position in the information space
- \blacksquare Thus context information is preserved

North & Shneiderman1997

Abstract Overviews

- When showing a miniature of a reasonably large information space much detail information may be lost
- Ecould in some cases be solved by presenting intermediate views, but: display space limitations
- Abstract overviews use encodings to use limited screen space more effectively
- May also contain extra information not present in the detail view
- Example: document overview (Jerding & Stasko 1995)
 - \equiv Overview always shows the entire document
 - \equiv Intensity scale indicates text density
 - \equiv Color denotes sections

Interface Performance

Task-completion time

- Navigation on the overview may significantly improve the interface performance
- \equiv E.g. users can directly navigate to locations that are currently not visible on the detail view
- Drawback: multiple views require time-consuming visual switching between views
- \equiv User study by Hornback et al. 2002
- \equiv 32 participants, counterbalanced within-subjects design
- \equiv Browsing and navigation tasks on two maps
- \blacksquare Two semantic ZUIs, one with and one without overview
- \blacksquare Participants were faster with the detail-only interface
- \equiv 80% preferred the overview-enhanced interface

Hornbaek et al. 2002

View Coordination

- \equiv Most simple o+d: overview shows a static image of the information space
 - \equiv Users are forced to compare the visual cues in the detail view with the cues in the overview
 - \equiv For reasonably large and complex information spaces, this approach is hardy usable

Dynamic overviews

- \equiv Visual cues such as a field-of-view box aid orientation
- \equiv Implies coordination of views
- \equiv Coordination (also termed tight coupling)
 - \equiv Unidirectional: only one view is interactive
 - \equiv Bidirectional: supports user input in both views
- Study by North&Shneiderman2000: coordinated views were found to be 30% to 50% faster than a detail-only interface and a o+d interface with two independent view

View Layout

- ■Basic side-by-side layout of views require that the available display space is partitioned between the views
- Problem: for both views the usability increases with a growing size
- \equiv No general solution for the space tradeoff
- ELayout of the views is task-dependent (Plaisant 1995)
 - Open-ended exploration or drawing tasks require a larger detail view
 - \equiv Monitoring tasks require a larger overview

Alternative View Layouts

≡Overlapping views

- \equiv Overview overlaps with the detail view (e.g. Acrobat overview)
- \equiv Users can drag and scale the overview view as desired
- \equiv Problem: managing windows is time-consuming and adds extra complexity to the interface

≡Automatic overviews

- \equiv System decides when to (temporarily) display an overview
- \equiv How to predict the need for an overview?
- \equiv E.g. extensive zooming and panning on the detail view
- \equiv Malfunction can be highly annoying
- Transparent overviews
 - \equiv Can be applied to both overlapping and automatic overviews
 - Problems: increased visual clutter and deteriorated readability of both detail view and overview

Zoom Factors

 \blacksquare Zoom factor: level of magnification between detail view and overview

≡Should be

- \equiv Less than 20 (Plaisant 1995)
- \equiv Between 3 and 30 (Shneiderman & Plaisant 2005)
- \blacksquare Larger zoom factors may require intermediate views