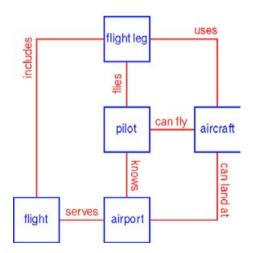
6. Graphs & Networks

Visualizing relations

Dr. Thorsten Büring, 29. November 2007, Vorlesung Wintersemester 2007/08

Maximilians– Universität___ München____

Outline


- Graph overview
 - Terminology
 - \equiv Networks and trees
 - Data structures
 - Graph drawing
- \equiv Comparison of graph layouts
- \equiv Graph visualization examples
 - Social networks
 - Copurchase network
 - Music network
 - Transportation network
- \equiv Case study: Telephone network visualizations
- \equiv Comparing node-link and matrix representations
- \equiv Interaction and animation

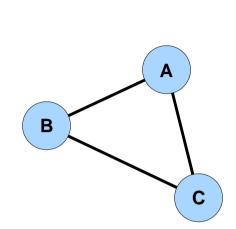
Graph Overview

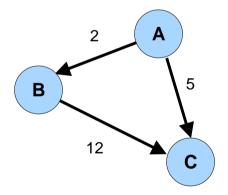
- \equiv Graph definition: an abstract structure that is used to model information
- Can represent any information that can be modeled as objects and connections between those objects
- \blacksquare Objects represented by vertices
- \equiv Relations between objects represented by edges
- E Commonly visualized as node-link diagrams
- Example domains
 - World Wide Web
 - Telephone networks
 - Financial transactions
 - Call graph in software engineering (which functions call which other functions)
 - CVS repositories
 - Social networks
 - Transportation networks
 - Co-citations...
- \equiv Graphs in InfoVis shall facilitate the understanding of complex patterns

Automatically generated airline database schema, Tamassia et al. 1988

Challenges in Graph Drawing

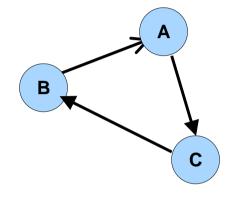
- \equiv Graph Visualization (layout and positioning)
 - \equiv How to present a graph to convey the most information and to make it easy to read and interpret it


 \equiv Scale


- \equiv Performance of layout algorithms
- \equiv Limited real estate of display area
- \equiv Navigation and Interaction
 - \equiv How to enable the user to move around the graph and inspect portions of the graph in detail

Graphs Terminology

- \equiv Graph consists of
 - \equiv Nonempty set of vertices (points)
 - \equiv Set of edges that link together the vertices
- Undirected graph
- \equiv Directed graph (usually indicted by arrows)
- \equiv Mixed graph contains both directed and undirected graphs
- \equiv Unweighted vs. weighted (nominal, ordinal quantitative) edges
- \equiv Degree of a vertex: the number of edges connected to it
- \equiv In-degree and out-degree for directed graphs
- Adjacency
 - \equiv Two edges sharing a common vertex
 - \equiv Two vertices sharing a common edge



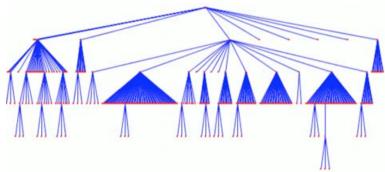
Universität___ München

Graphs Terminology

- Path: a traversal of consecutive vertices along a sequence of edges
- \equiv Length of the path: number of edges that are traversed along the path
- \equiv Simple path: no repeated vertices within the path
- \equiv Cycle: a path in which the initial vertex of the path is also the terminal vertex of the path
- Acyclic: a simple directed graph not containing any cycles

Directed Graph Cycle

Maximilians-Universität____ München

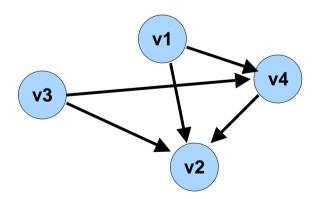

Special Types of Graphs

Network

- Directed Graph
- \equiv Usually weighted edges
- \equiv No topological restrictions
- Examples: social, economic, transportation networks

Tree

- \equiv No cycles
- \equiv Usually directed edges
- \equiv Usually special designated root vertex
- \equiv Example: organizational chart
- \equiv Will be topic of next lecture!


thorsten.buering@ifi.lmu.de

Universität___ München

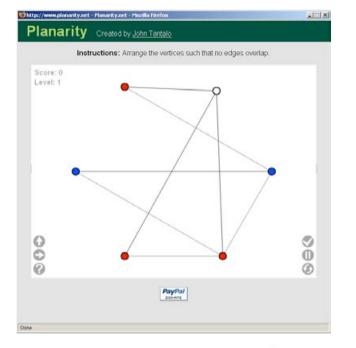
Data Structures for Graphs

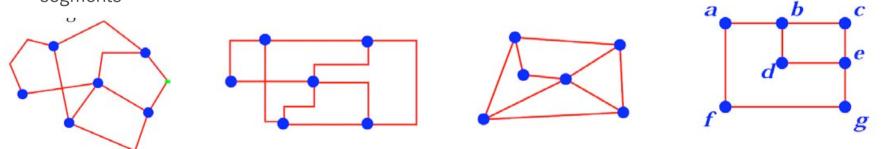
- \equiv Storing and processing a graph on a computer
- \equiv Adjacency List usually used for graphs with small numbers of edges
- Adjacency Matrix allows powerful matrix operations but is often more memory demanding
 - \equiv Row: edges leaving the vertex
 - \equiv Column: edges entering the vertex
- \equiv Example for directed graph

v1 -> v2 -> v4	
v2 ->	
v3 -> v2 -> v4 v4 -> v2	
v4 -> v2	

	v1	v2	v3	v4
v1	0	1	0	1
v2	0	0	0	0
v3	0	1	0	1
v4	0	1	0	0

Graph Drawing

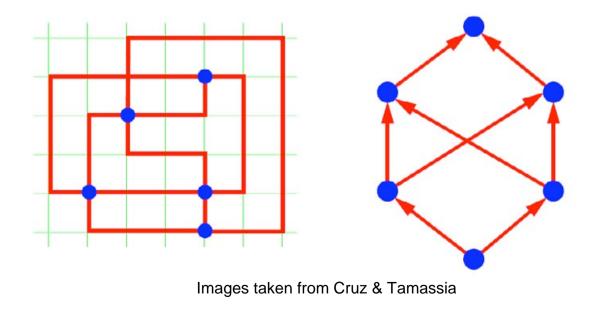

- \equiv Many ways to draw a graph
- \equiv Vertices are usually represented by circles
- \equiv Edges are usually represented by open curves between vertices
- Node-link diagram
- \equiv Potential encoding attributes
 - Color
 - ∃ Size
 - \equiv Form / Shape
- \equiv Labeling is often difficult due to clutter



Universität____ München____

Graph Drawing

- \equiv Layout algorithms can be categorized by the type of layout they generate
- \equiv Planar: edges do not intersect
- Straight, polyline (edge with bends) or curved lines
- Orthogonal: polyline drawing that maps each edge into a chain of horizontal and vertical segments



Images taken from Cruz & Tamassia

Graph Drawing

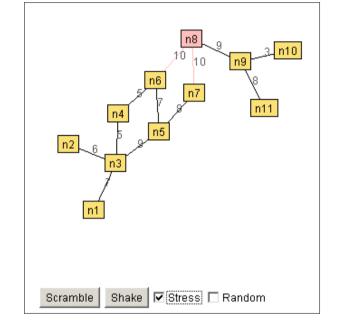
- Grid-based: vertices (and bends of the edges) have integer coordinates implies minimum distance between vertices and nonincident edges
- Upward / downward drawing for directed acyclic graphs: make edges flow in the same direction, e.g. for visualizing hierarchies

Layout Aesthetics

- Minimize crossing keep the number of times that lines cross to a minimum (hardly applicable in interactive systems)
- \equiv Minimize area keep the area that the graph takes up to a minimum by producing a compact graph
- \equiv Minimize the sum of the edge lengths
- \equiv Obtain a uniform edge length try to keep each of the edges at the same lengths
- \equiv Minimize bends keep the number of times there is a bend to a minimum
- \equiv Display symmetry of graph structure
- \equiv Maximize minimum angles between edges
- **—** ...

Empirical Results

■ Purchase 1997

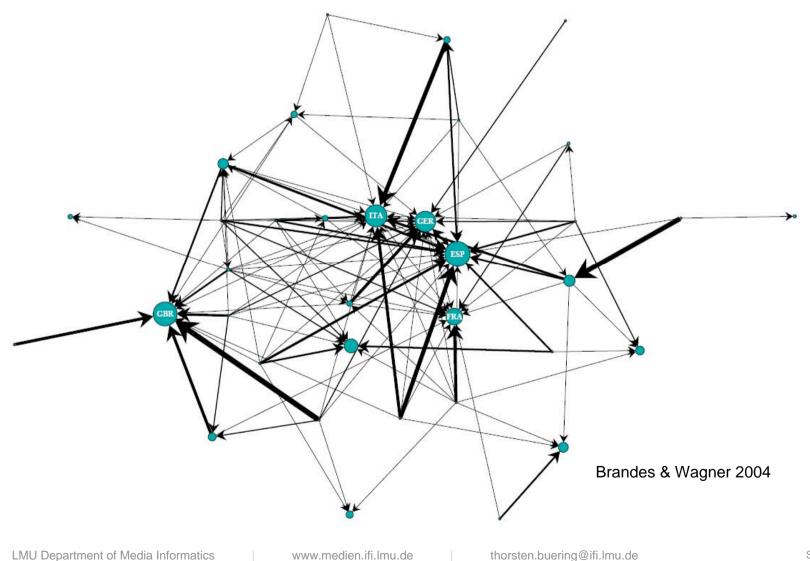

- \equiv Compare task performance on five pairs of graphs
- Graph pairs differed according to numbers of edge bends, edge crosses, maximizing the minimum angle, orthogonality and symmetry
- \equiv Result: Reducing crossings is by far most important
- \equiv Ware et al. 2002
 - \equiv Experimental task: finding the shortest path in spring layout graphs
 - \equiv Results indicate the following prioritization of metrics
 - \equiv Geometric length of the path (implicit property of a graph)
 - \equiv Continuity (keeping multi-edge paths as straight as possible)
 - \equiv Number of edge-crossings

Maximilians– Universität___ München

Spring Embedder

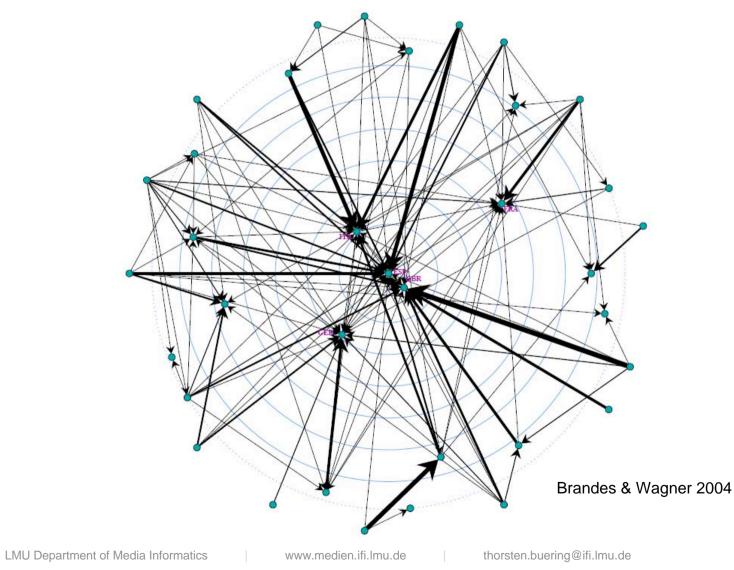
- Force-directed model for graph layout
- Eades 1984
- \equiv Intuitive approach: apply physical model of forces
 - \equiv Every vertex is considered a steel ring
 - \equiv Every edge a spring
- Resulting layout represents a configuration of minimum energy (force exerted on each ring is 0)
- \equiv Can produce well-balanced, symmetrical graphs
- Problem: time consuming quality of the graph depends on the number of full iterations (visit all pairs of vertices to calculate the effect of the forces) demo
- Overview of graph drawing algorithms: Pajntar 2006 (http://kt.ijs.si/dunja/SiKDD2006/Papers/Pajntar.pdf)
- Graph drawing library AGD: http://www.ads.tuwien.ac.at/AGD/
- Graph drawing tutorial: http://www.cs.brown.edu/~rt/papers/gdtutorial/gd-constraints.pdf

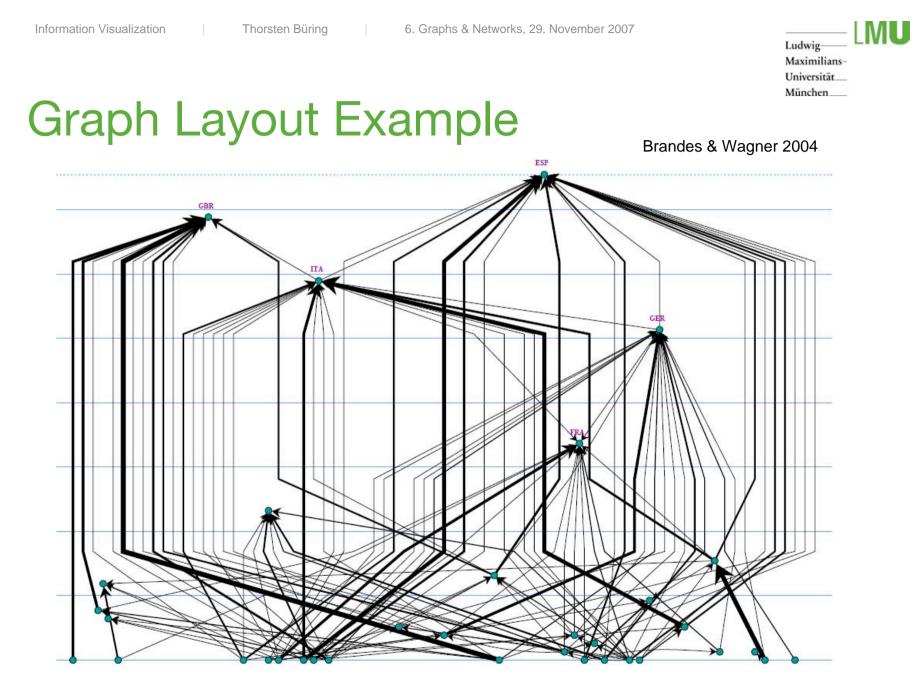
Spring embedder Java applet + source code http://www.inf.uni-konstanz.de/algo/lehre/ss04/gd/demo.html


Outline

- Graph overview
 - ∃ Terminology
 - \equiv Networks and trees
 - Data structures
 - **∃** Graph drawing
- \equiv Comparison of graph layouts
- \equiv Graph visualization examples
 - Social networks
 - \equiv Copurchase network
 - Music network
 - ∃ Transportation network
- \equiv Case study: Telephone network visualizations
- \equiv Comparing node-link and matrix representations
- \equiv Interaction and animation

Maximilians-Universität___ München


Graph Layout Example

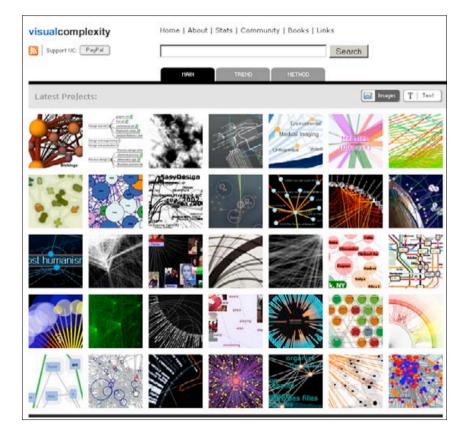


Maximilians– Universität___ München____

Graph Layout Example

LMU Department of Media Informatics

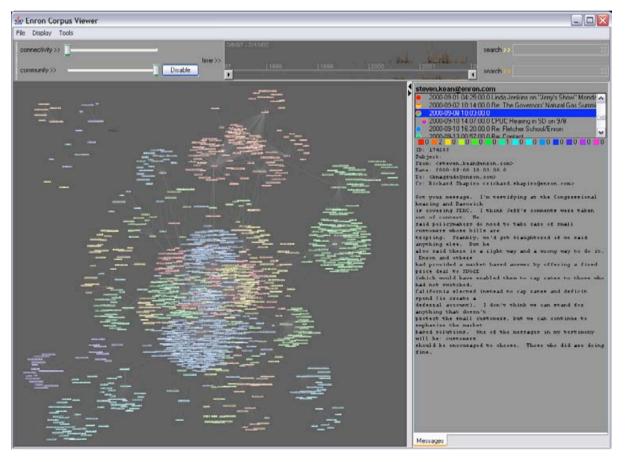
www.medien.ifi.lmu.de


Outline

- Graph overview
 - ∃ Terminology
 - \equiv Networks and trees
 - Data structures
 - Graph drawing
- \equiv Comparison of graph layouts
- \equiv Graph visualization examples
 - Social networks
 - \equiv Copurchase network
 - Music network
 - ∃ Transportation network
- \equiv Case study: Telephone network visualizations
- \equiv Comparing node-link and matrix representations
- \equiv Interaction and animation

Various Examples of Graph Drawings

■ http://www.visualcomplexity.com/



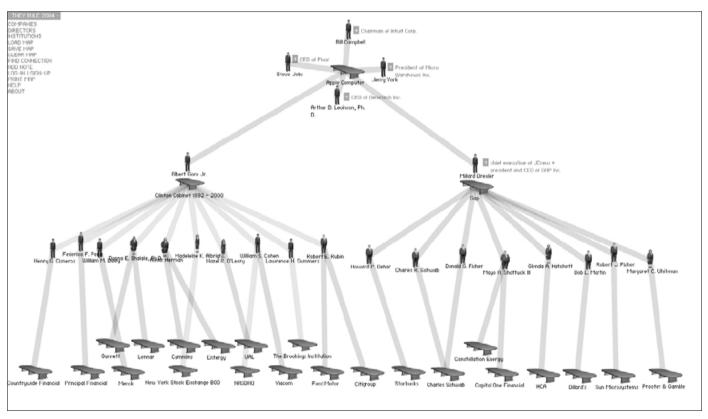
Maximilians– Universität___ München

Social Network

Exploring Enron: http://jheer.org/enron/

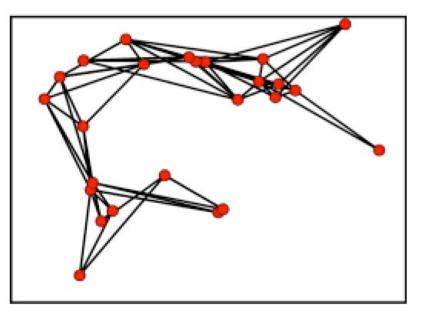
LMU Department of Media Informatics

www.medien.ifi.lmu.de

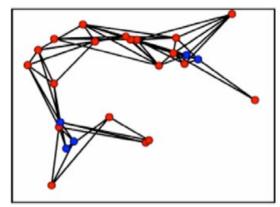

thorsten.buering@ifi.lmu.de

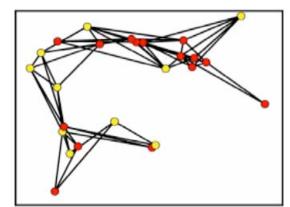
Universität___ München____

Social Network


They rule: http://www.theyrule.net/2004/tr2.php

Social Network

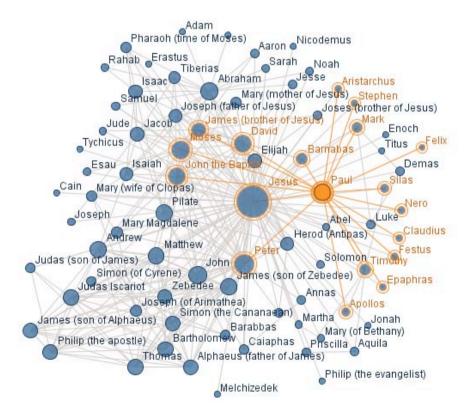

- \equiv Freeman 2005 (Example taken from Spence 2007)
- \equiv Employees of a department store spending leisure time together
- \equiv Length of paths represents the shortest path between a pair of employees
- \equiv What is the drive-force behind the pattern?



Social Network

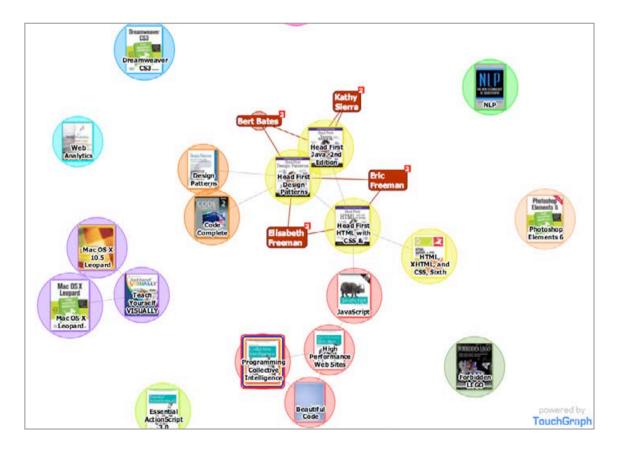
 \equiv Color-code attributes to detect patterns

Middle-Eastern Ethnic Background

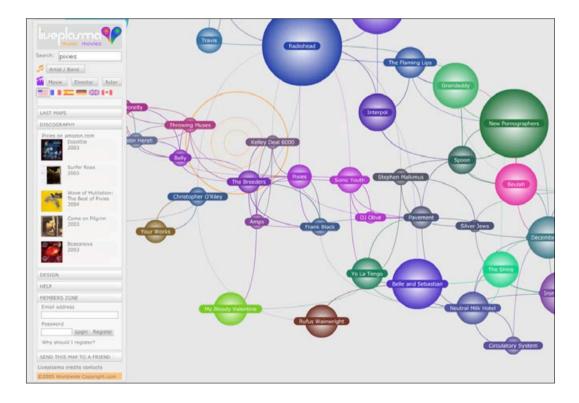

Married persons

Actor's Age Grades

Social Network?

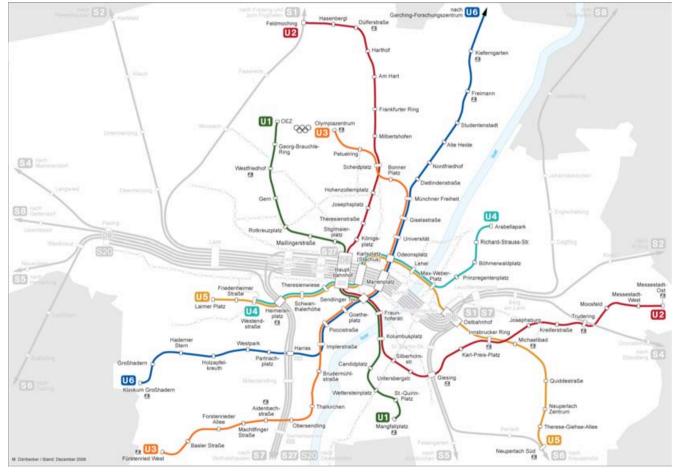

Co-occurrences of names in the new testament: http://services.alphaworks.ibm.com/manyeyes/view/SMGTJEsOtha6GEktsYeKE2-

Copurchase Network


Touch graph: http://www.touchgraph.com/TGAmazonBrowser.html

Music + Movie Network

- Liveplasma: http://www.liveplasma.com/
- \equiv Mapping and data source unclear

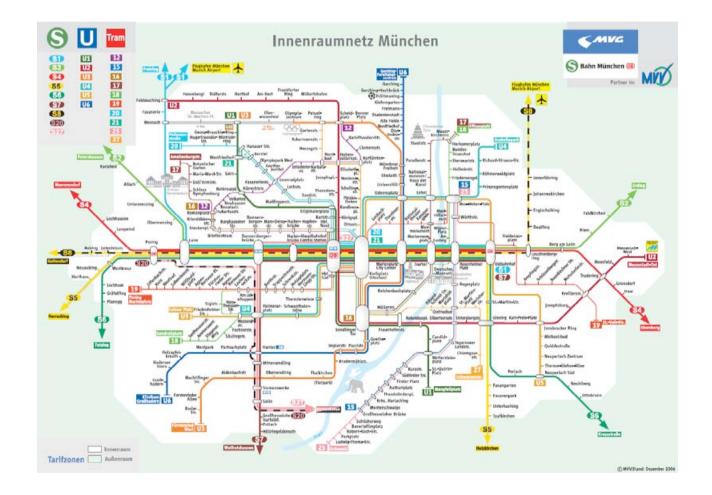


LMU Department of Media Informatics

Maximilians-Universität___ München____

Transportation Network

http://de.wikipedia.org/wiki/U-Bahn_M%C3%BCnchen


LMU Department of Media Informatics

www.medien.ifi.lmu.de

Maximilians– Universität___ München____

Transportation Network

Maximilians– Universität___ München

Transportation Network

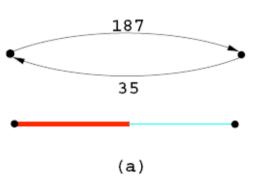
Objectives

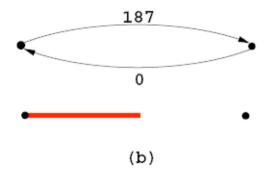
- \equiv Facilitate understanding of network connections
- \equiv Fit size and aspect ratio constraint (positioned above the doors in the underground)
- Heavily distorted geographic positions, but still good readability for identifying shortest paths between stations
- \equiv Despite landmarks such as rivers, more graph than map

http://de.wikipedia.org/wiki/U-Bahn_M%C3%BCnchen

Outline

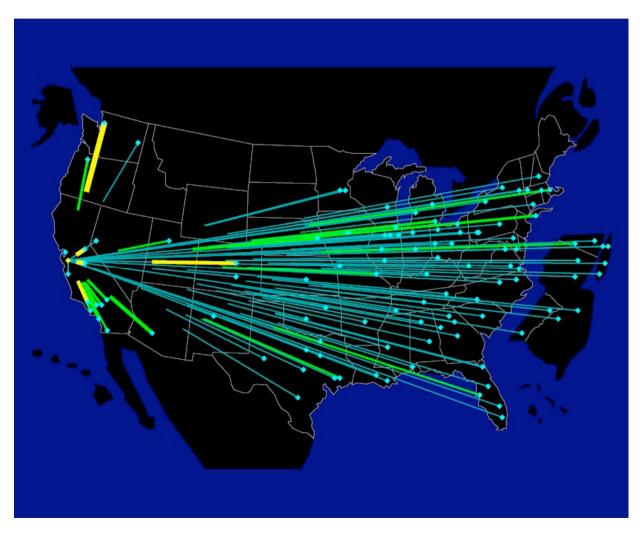
- Graph overview
 - ∃ Terminology
 - \equiv Networks and trees
 - Data structures
 - Graph drawing
- \equiv Comparison of graph layouts
- \equiv Graph visualization examples
 - Social networks
 - Copurchase network
 - Music network
 - Transportation network
- \equiv Case study: Telephone network visualizations
- \equiv Comparing node-link and matrix representations
- \equiv Interaction and animation


Telephone Network


- 📃 Becker et al. 1995 AT&T data
- \equiv 110 switches (nearly) completely connected
 - \equiv Each vertex has a geographic location
 - \equiv Statistics for each vertex, new data every five minutes
- \equiv 12,000 links between switches
- October 17, 1989 earthquake in San Francisco Bay area
- \equiv Questions related to network capacity and traffic flows
 - \equiv Where are the overloads?
 - \equiv Which links are carrying the most traffic?
 - \equiv Was there network damage?
 - \equiv Are there any pockets for underutilized network capacity?
 - \equiv Is the overload increasing or decreasing?
 - \equiv Are calls into the affected area completing or are they being blocked elsewhere in the network?
- \equiv Different representations: linkmap, nodemap, matrix display

Linkmap Encoding

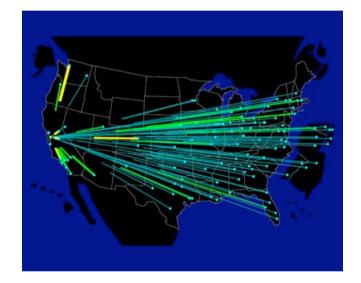
- Switches (vertices) are arranged according to their geographical position
- Two-tiled edges represent overload of in- and outgoing calls between switches
- Redundant coding to make the important edges more apparent: color and line-thickness both indicate amount of overload
- Reduce clutter by omitting edge segments where the overload value is zero



Maximilians-Universität____ München____

Linkmap - Oakland Switch

LMU Department of Media Informatics


www.medien.ifi.lmu.de

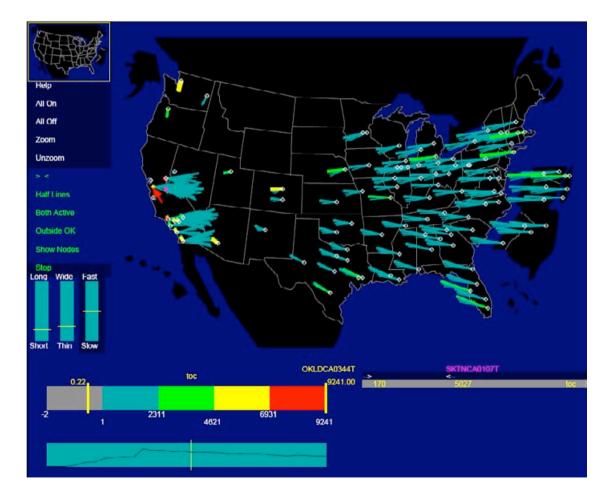
Maximilians– Universität___ München

Linkmap - Oakland Switch

- \equiv Overload into one switch
 - Into Oakland switch from every other node (most heavily from Seattle and Denver)
 - \equiv Out of Oakland switch to many switches particularly on the east coast
- ➡ Island in the Atlantic Ocean is a blow-up of NY / New Jersey area (to reduce density of switches)
- \equiv Does work well because the edges hardly overlap
- \equiv What about showing total overload?

Ludwig—— ¹ Maximilians– Universität<u>—</u> München

Linkmap - Total Overload


- \equiv Most important links are drawn last
- Still: display is ineffective because long edges from one coast to another obscure much of the country
- To reduce clutter: edge may be drawn only part way between the vertices they connect

Maximilians– Universität<u>–</u> München<u>–</u>

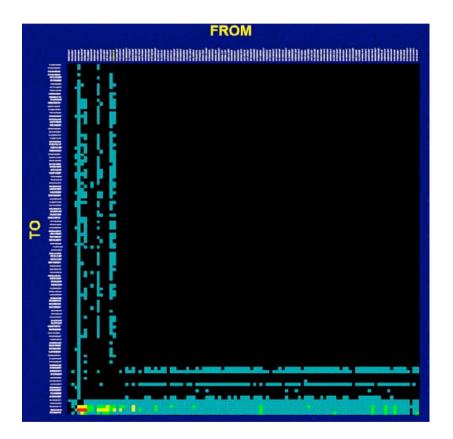
Linkmap - Total Overload

Universität___ München

Nodemap

■ Glyph encoding

- \equiv Aggregate overload into and out of each switch
- Rectangle width: proportional to the square root of the number of incoming calls
- Rectangle height: proportional to the square root of the number of outgoing calls
- Area of rectangle proportional to total overload
- Interpretation: overload of outgoing calls from nodes to northern and southern California
- \equiv Problem with this kind of representation?
- No clutter, but detailed information about particular links between switches is lost

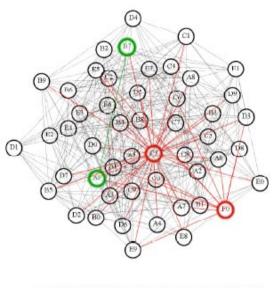


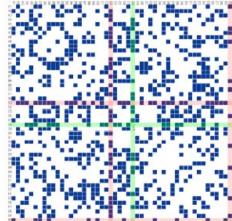
Maximilians– Universität___ München

Matrix Display

- \equiv Omits information about geography
- Each matrix element is allocated to a directed link (half-line)
- Each switch is assigned to one row (incoming calls) and one column (outgoing calls)
- \equiv Switches are arranged west-to-east
- Interpretation
 - \equiv Five switches with major incoming overload (rows)
 - One switch with outgoing overload to almost every other node (column)
- \equiv Very compact visualization without clutter
- \equiv Problems with this kind of representation?
- Inference of the visualization is influenced by the ordering of the rows and columns
- Intuitiveness and readability when compared to a node-link diagram?

Outline

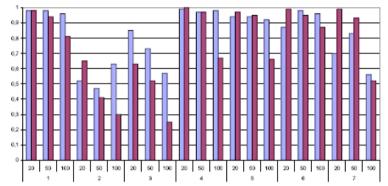

- Graph overview
 - ∃ Terminology
 - \equiv Networks and trees
 - Data structures
 - Graph drawing
- \equiv Comparison of graph layouts
- \equiv Graph visualization examples
 - Social networks
 - Copurchase network
 - Music network
 - Transportation network
- \equiv Case study: Telephone network visualizations
- \equiv Comparing node-link and matrix representations
- \equiv Interaction and animation

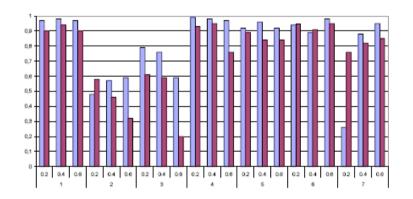


Universität___ München

Node-link versus Matrix

- Ghoniem et al. 2004
- \equiv On-demand highlighting of selected nodes and links
- 36 participants
- \equiv Tasks to test readability
 - \equiv Estimation of number of vertices in the graph
 - \equiv Estimation of number of edges
 - \equiv Locating most connected node
 - \equiv Locate node by label
 - \equiv Find link between two specified nodes
 - \equiv Finding a common neighbor between two specified nodes
 - \equiv Finding a path between two nodes
- Random undirected graphs of three different sizes (number of vertices) and density (relative number of edges)




Maximilians– Universität___ München

Node-link versus Matrix

- Independent variables
 - **∃** Graph representation
 - \equiv Number of vertices
 - \equiv Relative number of edges
- \equiv Dependent variables
 - \equiv Answer time (results not shown here)
 - \equiv Number of correct answers
- All users were familiar with node-link diagrams, but not with matrices
- Node-link diagrams seem to be well suited for small graphs but their readability quickly deteriorates with a growing size of the graph and link density
- Matrix provides a superior readability for large or dense graphs
- \equiv Node-link diagram only clearly superior for find-path task

Figure 2 Percentage of correct answers split by task and by size. The matrix representation appears in blue and the node-link in purple.

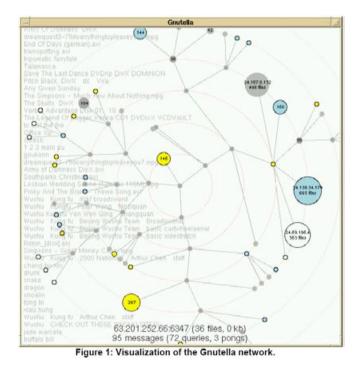
Figure 3 Percentage of correct answers split by task and by density. The matrix representation appears in blue and the node-link in purple.

Outline

- Graph overview
 - ∃ Terminology
 - \equiv Networks and trees
 - Data structures
 - Graph drawing
- \equiv Comparison of graph layouts
- \equiv Graph visualization examples
 - Social networks
 - Copurchase network
 - Music network
 - Transportation network
- \equiv Case study: Telephone network visualizations
- \equiv Comparing node-link and matrix representations
- \equiv Interaction and animation

Graph Interaction

- Dynamic visualization & interaction is essential for exploring / navigating graphs
 - \equiv Dragging and highlighting of vertices and edges
 - Filtering
 - ∃ Zooming & panning
 - Focus+context distortion
- \equiv Animation can support exploration


Focus+Context graph - Jankun-Kelly et al. 2003

Maximilians– Universität<u>–</u> München

Transitions in Radial Tree Layout

- Radial tree layout: common technique in which the graph is arranged around a focus node
- Users can change the layout by selecting a different focus node
- \equiv Animated transitions of node translation
- \equiv Objective: keep the transitions easy to follow
- \equiv Animation mechanism
 - \equiv Linear interpolation of polar coordinates of the nodes
 - \equiv Follows ordering and orientation constraints
- Movie 📃

Additional Sources and Literature

\equiv Obligatory reading

- Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin: "NodeTrix: A Hybrid Visualization of Social Networks", InfoVis, 2007.
- http://insitu.lri.fr/~nhenry/docs/Henry-InfoVis2007.pdf
- \equiv Tutorials for graph theory and graph drawing
 - http://www.cs.usask.ca/resources/tutorials/csconcepts/1999_8/
 - ∃ http://davis.wpi.edu/~matt/courses/graphs/