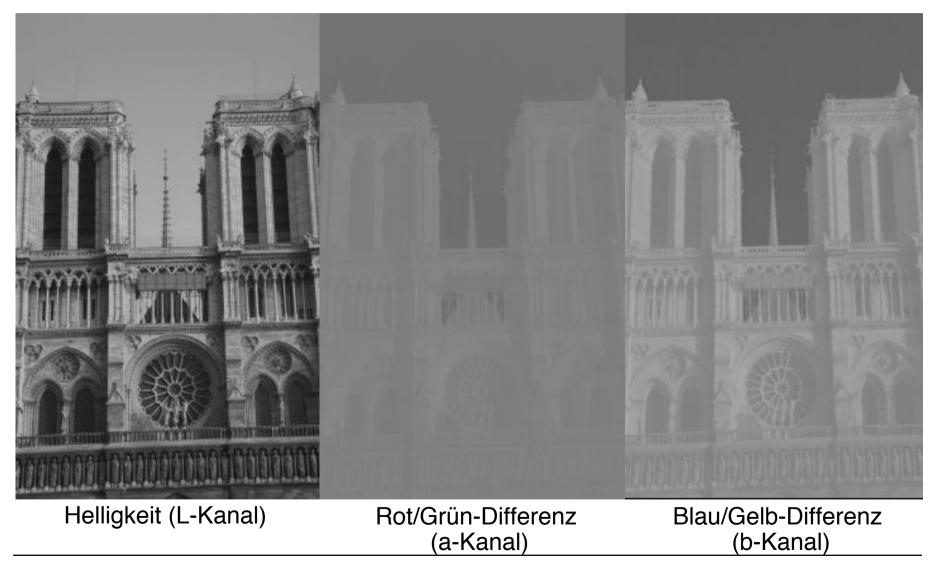
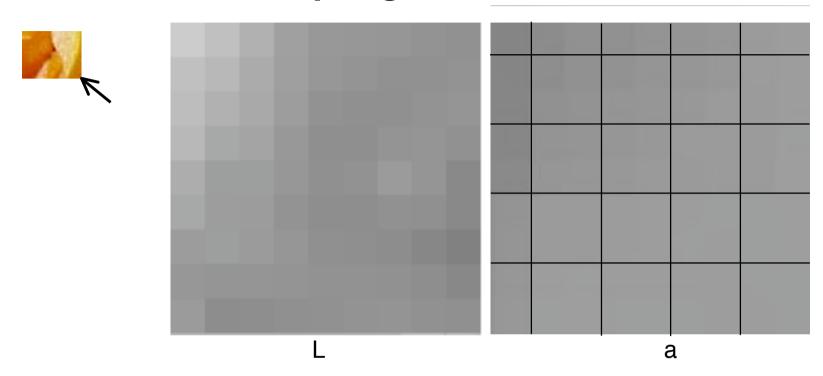
6. Licht, Farbe und Bilder

- 6.1 Licht und Farbe: Physikalische und physiologische Aspekte
- 6.2 Farbmodelle
- 6.3 Raster-Bilddatenformate
 - Grundbegriffe für Bildspeicherung und -Bearbeitung
 - Bitmap-Formate
 - Verlustfrei komprimierende Formate
- 6.4 Verlustbehaftete Kompression bei Bildern

6.5 Weiterentwicklungen bei der Bildkompression

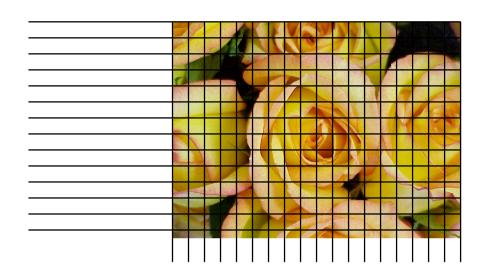

Weiterführende Literatur:

John Miano: Compressed Image File Formats - JPEG, PNG, GIF, XBM, BMP, Addison-Wesley 1999


Warum und wann verlustbehaftet komprimieren?

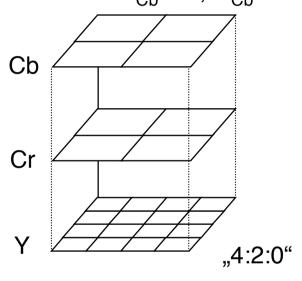
- Durch Aufnahme aus der realen Welt erzeugte Bilder (v.a. Fotos) sind sehr groß (z.B. 4 Mio. Pixel mit je 24 bit = 12 Mbyte)
- Das Auge wertet nicht alle Informationen des Bildes gleich gut aus
 - z.B. Helligkeit vs. Farbigkeit
 - z.B. Feinabstufungen von Verläufen
- Mit verlustbehafteten Kompressionsverfahren wird
 - ein oft sehr hoher Gewinn an Speicherplatz erzielt
 - der subjektive Eindruck des Bildes kaum verändert
- Bekanntestes Verfahren: JPEG
- Achtung: Für Archivierung von hochwertigen Bild-Originalen eignet sich JPEG nur bedingt (bei Einstellung von geringen Kompressionsgraden)
 - Alternativen z.B.: TIFF, PNG

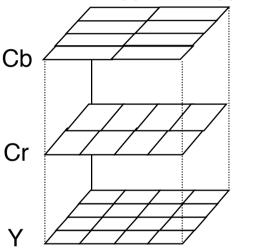
Luma- und Chromainformation: Vergleich



Chroma-Subsampling

- In vielen Fällen genügt eine geringere Auflösung für die Farbinformation (Chroma, Cr+Cb) als für die Helligkeit (Luma, Y).
 - Passende Farbmodelle: YUV, YIQ, Lab
 - Teilweise aber abhängig vom Darstellungsinhalt
- Chroma-Subsampling = niedrigere Abtastrate f
 ür Farbinformation
 - Speicherplatzersparnis im Beispiel 50% (bei gleichem Subsampling für b)


Abtastraten für Bilder


- Abtastrate: Wieviele Pixel pro Längeneinheit des Bildes?
- Mehrdimensionalität:
 - Horizontale Abtastrate (H)
 - Vertikale Abtastrate (V)
- Bei Sub-Sampling:
 - Verschiedene Abtastraten für verschiedene Komponenten des Bildes (Farben, evtl. Alphakanal)

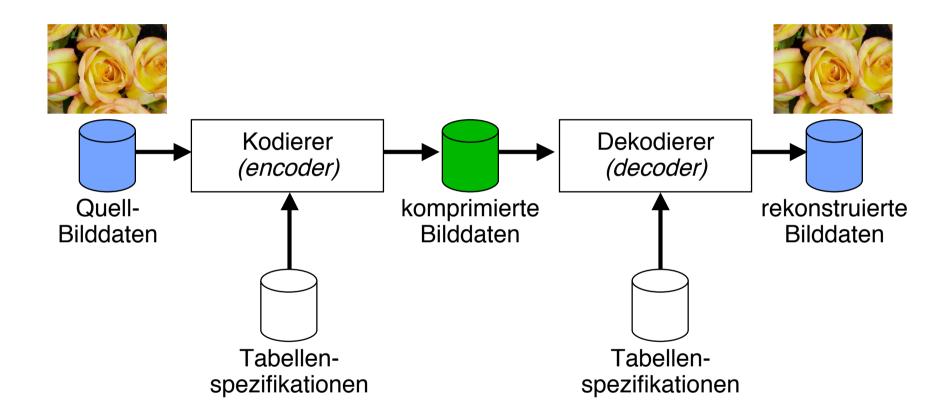
Subsampling

Y:
$$H_Y = 4$$
, $V_Y = 4$
Cr: $H_{Cr} = 2$, $V_{Cr} = 2$
Cb: $H_{Ch} = 2$, $V_{Ch} = 2$

Y:
$$H_Y = 4$$
, $V_Y = 4$
Cr: $H_{Cr} = 4$, $V_{Cr} = 2$
Cb: $H_{Cb} = 2$, $V_{Cb} = 4$

- H und V: Zahl der berücksichtigen Pixel je 4x4-Block (subsampling rate)
 - horizontal und vertikal
- Subsampling bei verschiedenen digitalen Bildverarbeitungstechniken benutzt
 - in JPEG (optional)
 - auch in diversen digitalen Video-Aufzeichnungs-Standards

Notation für Subsampling


- Übliche Notation für Subsampling von Farben:
 - x:y:z
 - Vertikales Subsampling oft nicht genutzt
 - Ursprüngliche Bedeutung: Horizontales Frequenzverhältnis für Luma (x) zu den beiden Chroma-Kanälen (y, z)
- Heutige Bedeutung:
 - Beide Chroma-Kanäle immer gleich abgetastet
 - x: Anzahl der Luma-Samples, Vielfaches der NTSC-Abtastfrequenz
 3.570 MHz; in der Regel "4"
 - y: Anzahl der Cr/Cb-Chroma-Samples, horizontal
 - z: Falls z=y: kein vertikales Subsampling der Chroma-Kanäle
 Falls z=0: vertikales Chroma-Subsampling 2:1
- Beispiele :
 - $4:2:2 H_Y=4, V_Y=4, H_{Cr}=2, V_{Cr}=4, H_{Cb}=2, V_{Cb}=4$
 - -4:1:1 $H_y=4$, $V_y=4$, $H_{Cr}=1$, $V_{Cr}=4$, $H_{Ch}=1$, $V_{Ch}=4$
 - 4:2:0 entspricht $H_Y=4$, $V_Y=4$, $H_{Cr}=2$, $V_{Cr}=2$, $H_{Cb}=2$, $V_{Cb}=2$ (bei JPEG weit verbreitet)
- Bandbreitenformel: Summe der drei Zahlen geteilt durch 12

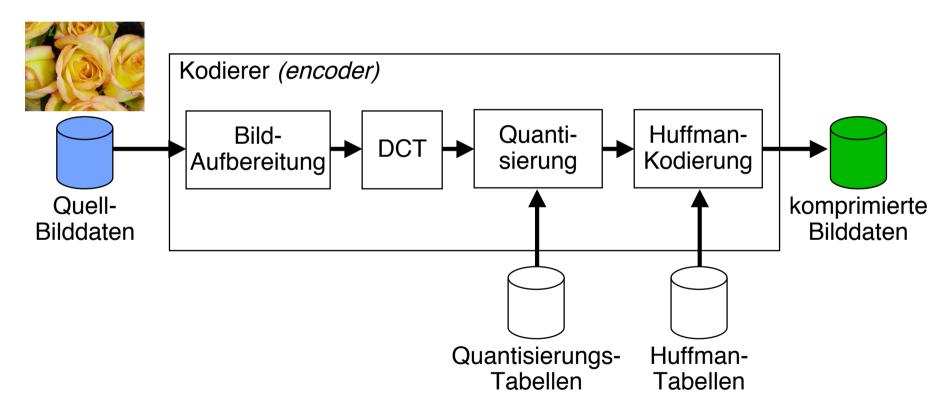
JPEG: Hintergrund

- JPEG = "Joint Photographics Expert Group"
 - "Joint" wegen Zusammenarbeit von Arbeitsgruppen zweier Organisationen (ISO und CCITT/ITU)
 - Arbeit seit 1982, Verfahrensvergleich 1987, Auswahl einer "adaptiven Transformationskodierung basierend auf Diskreter Cosinus-Transformation (DCT)"
 - 1992: ITU-T Recommendation T.81 + Internationaler Standard ISO 10918-1
- Wichtige Eigenschaften/Anforderungen:
 - Unabhängigkeit von Bildgröße, Seitenverhältnis, Farbraum, Farbvielfalt
 - Anwendbar auf jedes digitale Standbild mit Farben oder Grautönen
 - Sehr hohe Kompressionsrate
 - Parametrisierbar in Qualität/Kompression
 - Realisierbar durch Software und Spezial-Hardware: gute Komplexität
 - Sequentielle und progressive Dekodierung
 - Unterstützung von verlustfreier Kompression und hierarchischer Verfeinerung der Bildqualität

JPEG-Architekturmodell

JPEG-Modi

- Charakteristika:
 - Verlustbehaftet oder verlustfrei
 - sequentiell, progressiv oder hierarchisch
 - Abtasttiefe (für bis zu 4 Komponenten)
 - (Entropie-)Kompressionsverfahren: Huffman- oder arithmetische Kodierung
- Basismodus (baseline process):
 - Verlustbehaftet (DCT), 8 bit Tiefe, sequentiell, Huffman-Kodierung
- Erweiterter Modus (extended process):
 - Verlustbehaftet (DCT), 8 oder 12 bit Tiefe, sequentiell oder progressiv,
 Huffman-Kodierung oder arithmetische Kodierung, mehr Tabellen
- Verlustfreier Modus (lossless process):
 - Verlustfrei (kein DCT), 2 16 bit Tiefe, sequentiell, Huffman-Kodierung oder arithmetische Kodierung
- Hierarchischer Modus (hierarchical process):
 - Baut auf erweitertem oder verlustfreiem Modus auf, Mehrfach-Frames


meist verwendet

selten verwendet

ungebräuchlich

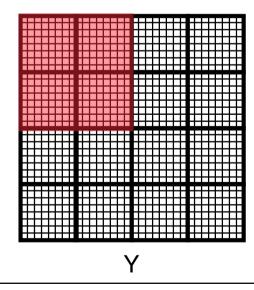
Schritte der JPEG-Kodierung

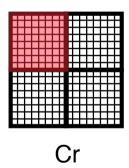
 Hier nur die gebräuchlichste Variante: verlustbehaftet, sequentiell, 8-bit-Daten, Huffman-Kodierung

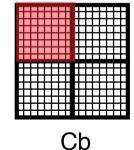
DCT = Discrete Cosinus Transformation

JPEG-Kodierung: Bildaufbereitung (1)

- Bild wird generell in 8 x 8-Pixel-Blöcke (data units) eingeteilt
 - Am Rand wird "aufgefüllt"
- Bild kann theoretisch aus bis zu 255 Komponenten (components) bestehen
 - Verbreitet: 3 oder 4, nach Farbmodell
- Verzahnte (interleaved) oder nicht-verzahnte Reihenfolge:
 - Ablage der Komponenten nacheinander nicht ideal:
 - » Z.B. könnten 3 Farbkomponenten *nacheinander* erscheinen
 - » Pipelining in der Verarbeitung erfordert vollständige Information über einen Bildanteil
 - Verzahnte Ablage: Einheiten, die je mindestens eine data unit jeder Komponente enthalten: Minimum Coded Units (MCU)
 - Maximal vier Komponenten können verzahnt werden

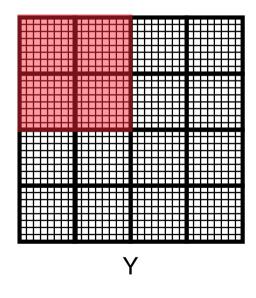

JPEG-Kodierung: Bildaufbereitung (2)

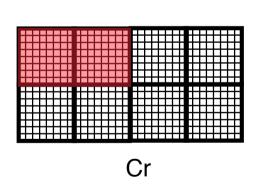

Subsampling

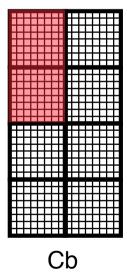

- Interleaving bei gleichzeitigem Chroma-Subsampling:
 - Jede Komponente eingeteilt in *Regionen* aus $H_c \times V_c$ Data Units $(H_c \text{ und } V_c \text{ Subsampling-Raten der Komponente } c)$
 - Jede Komponente von links oben nach rechts unten zeilenweise gespeichert
 - MCUs enthalten Data Units aus allen Komponenten anteilig

Beispiel: MCU bei 4:2:0-Subsampling

$$(H_Y = 4, V_Y = 4, H_{Cr} = 2, V_{Cr} = 2, H_{Cb} = 2, V_{Cb} = 2)$$



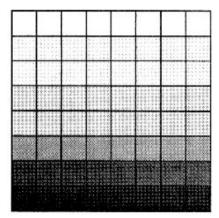



JPEG-Kodierung: Bildaufbereitung (3)

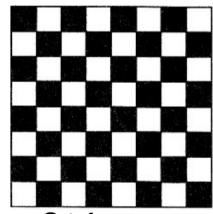
Subsampling

Subsampling für Y: $H_Y = 4$, $V_Y = 4$, für Cr: $H_{Cr} = 4$, $V_{Cr} = 2$, für Cb: $H_{Cb} = 2$, $V_{Cb} = 4$





Ortsfrequenz


- Ortsfrequenz (oder: räumliche Frequenz, spatial frequency)
 - Häufigkeit der Wiederholung einer im Bild erkennbaren Eigenschaft über die räumliche Ausdehnung
 - Maßeinheit: 1/Längeneinheit
 - z.B. Dichte von Linien auf Papier: Anzahl Striche pro cm
- Meist: Anzahl von Helligkeitsschwankungen pro Längeneinheit
- 2-dimensionale Frequenz (horizontal und vertikal)

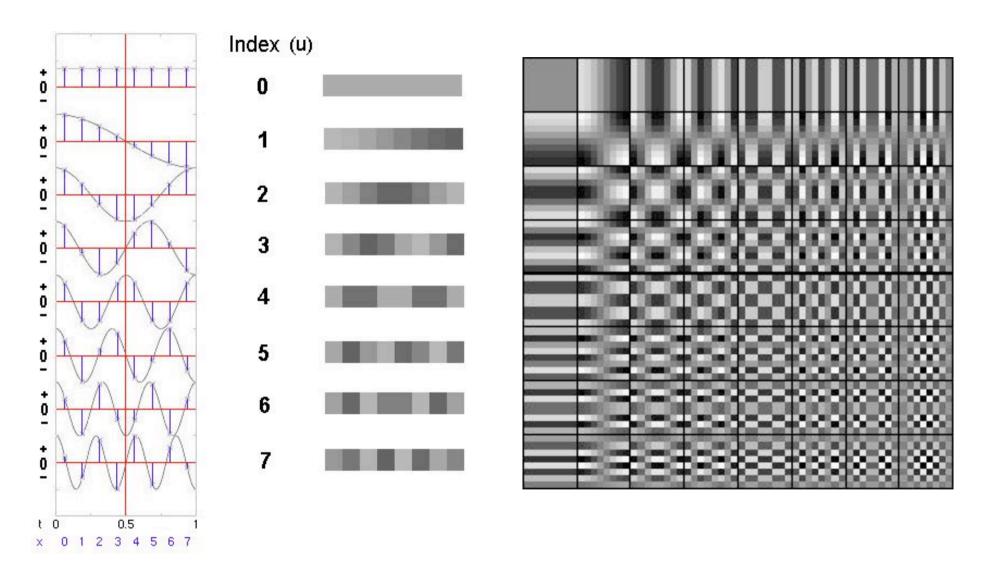
Ortsfrequenz 0

Ortsfrequenz 0 horizontal, niedrig vertikal

Ortsfrequenz hoch horizontal und vertikal

Diskrete Cosinus-Transformation (DCT)

Grundmotivation:


JPEG-Schritte

- Menschliche Sehwahrnehmung sehr empfindlich für niedrige und mittlere Frequenzen (Flächen, deutliche Kanten), wenig empfindlich für hohe Frequenzen (z.B. feine Detaillinien)
- Deshalb Zerlegung der Bildinformation in Frequenzanteile (ähnlich zu Fourier-Transformation)
- Prinzip von DCT:
 - (in einer oder zwei Dimensionen...)

Datenpunkte und Koeffizienten sind bei JPEG jeweils 8 x 8 - Integer - Blöcke

Basisfunktionen der DCT in 1D und 2D

(Forward) DCT: Mathematische Definition

$$F(u,v) = \frac{1}{4}c_u c_v \sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cos \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16}$$

wobei

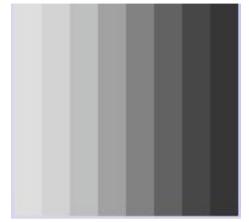
$$x, y$$
 Koordinaten für die Datenpunkte einer Quell-Dateneinheit $(x, y = 0, ..., 7)$

$$u,v$$
 Koordinaten für die Ziel-Koeffizienten ($u, v = 0, ... 7$) $f(x,y)$ Datenwert (Sample)

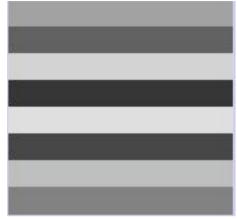
$$f(x,y)$$
 Datenwert (Sample)

$$F(u,v)$$
 Koeffizientenwert

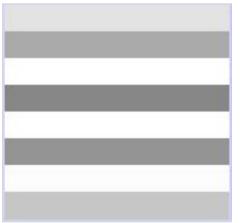
$$c_u, c_v = \frac{1}{\sqrt{2}}$$
 falls u, v = 0

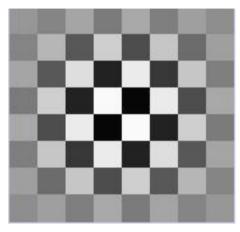

$$c_{u}$$
, $c_{v} = 1$ sonst

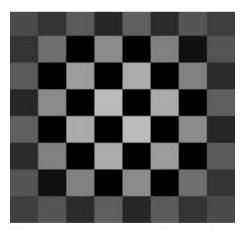
- Die Berechnung der Formel lässt sich auf eine einfache Matrixmultiplikation mit konstanten Matrixeinträgen reduzieren.
- Aus technischen Gründen Sample-Wertebereich zuerst in (- 128, +127) verschoben


Matrixdarstellung zur Durchführung einer DCT

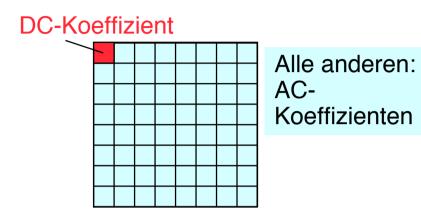
$$\begin{bmatrix} \frac{1}{4}\sqrt{2} & \frac{1}{4}\sqrt{2} \\ \frac{1}{2}\cos\left(\frac{1}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{3}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{5}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{7}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{9}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{11}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{13}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{15}{16}\pi\right) \\ \frac{1}{2}\cos\left(\frac{1}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{3}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{5}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{7}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{9}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{11}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{13}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{15}{8}\pi\right) \\ \frac{1}{2}\cos\left(\frac{3}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{9}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{15}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{21}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{27}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{33}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{39}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{45}{16}\pi\right) \\ \frac{1}{2}\cos\left(\frac{1}{4}\pi\right) & \frac{1}{2}\cos\left(\frac{3}{4}\pi\right) & \frac{1}{2}\cos\left(\frac{5}{4}\pi\right) & \frac{1}{2}\cos\left(\frac{7}{4}\pi\right) & \frac{1}{2}\cos\left(\frac{9}{4}\pi\right) & \frac{1}{2}\cos\left(\frac{13}{4}\pi\right) & \frac{1}{2}\cos\left(\frac{15}{4}\pi\right) \\ \frac{1}{2}\cos\left(\frac{5}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{15}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{25}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{35}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{45}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{65}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{75}{16}\pi\right) \\ \frac{1}{2}\cos\left(\frac{3}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{9}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{15}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{21}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{27}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{33}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{39}{8}\pi\right) & \frac{1}{2}\cos\left(\frac{45}{8}\pi\right) \\ \frac{1}{2}\cos\left(\frac{7}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{21}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{49}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{63}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{91}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) \\ \frac{1}{2}\cos\left(\frac{7}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{21}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{49}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{63}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{91}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{91}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) \\ \frac{1}{2}\cos\left(\frac{7}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{21}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{49}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{63}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{91}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) \\ \frac{1}{2}\cos\left(\frac{7}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{15}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{49}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{63}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{91}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) \\ \frac{1}{2}\cos\left(\frac{7}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) \\ \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}{16}\pi\right) & \frac{1}{2}\cos\left(\frac{105}$$


Beispiele für DCT-Transformation

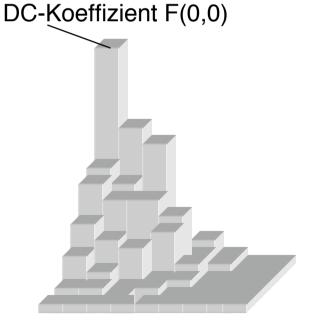

F(0,1) = 500, alle anderen F(u, v) = 0


F(7,0) = 500, alle anderen F(u, v) = 0

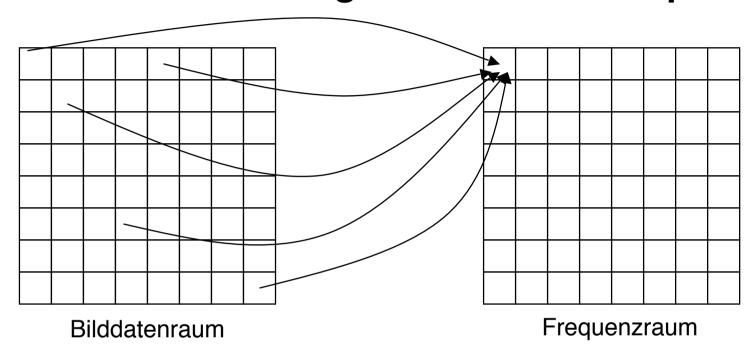
F(7,0) = 500, F(0,0) = 600 alle anderen F(u, v) = 0



F(7,7) = 500, alle anderen F(u, v) = 0


F(7,7) = 500, F(0,0) = -600 alle anderen F(u, v) = 0

Interpretation der DCT-Koeffizienten



- Der DC-Koeffizient gibt den Grundton des beschriebenen Bereichs (8x8) im Bild an (in der aktuellen Komponente)
- Die AC-Koeffizienten geben mit aufsteigenden Indizes den Anteil "höherer Frequenzen" an, d.h. die Zahl der (vertikalen bzw. horizontalen) Streifen
- Z.B.:
 - F(7,0) gibt an, zu welchem Anteil extrem dichte waagrechte Streifen vorkommen;
 - F(0,7) gibt an, zu welchem Anteil extrem dichte senkrechte Streifen vorkommen

DC = Gleichstrom AC = Wechselstrom

DCT: Zusammenhang Datenraum - Frequenzraum

- Ein Punkt im Frequenzraum fasst die Informationen aus dem aktuell betrachteten Bilddatenraum (8x8 Pixel) zusammen.
- Kanten erscheinen als Anteile hoher Frequenzen; bei Flächen sind die hohen Frequenzen fast Null
 - Gute Voraussetzung für spätere Kompression der Null-nahen Werte durch Entropiekodierung

Inverse DCT: Mathematische Definition

$$f(x,y) = \frac{1}{4} \sum_{x=0}^{7} \sum_{y=0}^{7} c_u c_y F(u,y) \cos \frac{(2x+1)u\pi}{16} \cos \frac{(2y+1)v\pi}{16}$$

wobei

$$x,y$$
 Koordinaten für die Datenpunkte einer Quell-Dateneinheit $(x,y=0,\ldots,7)$ u,v Koordinaten für die Ziel-Koeffizienten $(u,v=0,\ldots,7)$ Datenwert (Sample) $F(x,y)$ Koeffizientenwert $c_u,c_v=\frac{1}{\sqrt{2}}$ falls $u,v=0$ $c_u,c_v=1$ sonst

- Die Berechnung ist fast identisch mit der Vorwärts-Transformation.
- Mathematisch gesehen, ist der Prozess verlustfrei!
 - Verluste entstehen aber durch Rundungsfehler

JPEG-Kodierung: Quantisierung

 Entscheidender Schritt zum Informationsverlust und damit zur starken Kompression!

JPEG-Schritte

- Runden der Koeffizienten erzeugt viele Null-Werte und ähnliche Werte
- Damit besser mit nachfolgenden verlustfreien Verfahren komprimierbar
- Quantisierungstabelle:
 - Enthält 64 vorgegebene und konstante Bewertungs-Koeffizienten Q(u, v)
 - Bedeutung: Bewertung der einzelnen Frequenzanteile des Bildes
 - Größere Tabelleneinträge bedeuten stärkere Vergröberung
 - Konkrete Tabellen nicht Bestandteil des Standards (nur zwei Beispiele)
 - » Typisch: Verschiedene Bewertung für hohe und niedrige Frequenzen
 - Benutzte Quantisierungstabellen werden als Bestandteil der komprimierten Daten abgelegt und bei Dekompression benutzt
- Berechnung:
 - Division Frequenz-Koeffizient / Bewertungskoeffizient und Rundung

$$F'(u,v) = Round\left(\frac{F(u,v)}{Q(u,v)}\right)$$

	12	12	14	19	20	58	60	22	
oeffizient	14	13	16	24	40	57	69	56	
Rundung	14	17	22	29	51	87	80	62	
	18	22	37	56	68	109	103	77	
	24	35	55	64	81	104	113	92	
Typische	49	64	78	87	103	121	120	101	
Tabelle	72	92	95	98	112	100	103	99	

Rechenbeispiel: Quantisierung

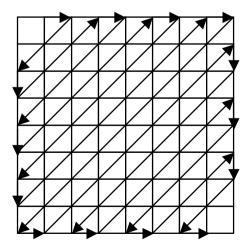
DCT-Koeffizienten

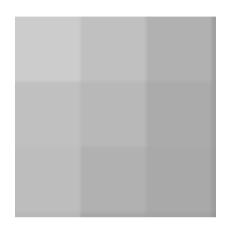
$$\begin{cases} 31 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -7 & -8 & 1 & 1 & 0 & 0 & 0 & 0 \\ -12 & 7 & 0 & -1 & 0 & 0 & 0 & 0 \\ -5 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\ -7 & -3 & 3 & 0 & 0 & 0 & 0 & 0 \\ -4 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{cases}$$

quantisierte DCT-Koeffizienten

http://www.mathematik.de/

Quantisierungsmatrix


Informationsverlust durch Quantisierung


Artefakte treten bei Kanten und Details auf, kaum bei Flächen

Vorbereitung zur Weiterverarbeitung

- Quantisierte Frequenzwerte:
 - werden in linearer Reihenfolge ausgegeben
 - unterschiedliche Behandlung DC- und AC-Koeffizienten
- DC-Koeffizienten:
 - Benachbarte Dateneinheiten haben oft ähnlichen Grundton.
 - Deshalb separat extrahiert (alle DC-Koeffizienten des Bildes in ein "Grobbild")
- AC-Koeffizienten:
 - Ausgabe nach absteigender Frequenz ("Zick-Zack")

Prädiktive Codierung: Grundidee

45	48	60
50	55	65
52	60	70

-10	-7	+5
-5	55	+10
-3	+5	+15

- Feste Werte nur für einige Basispixel definieren
- Für andere Pixel nur Differenz speichern
- Potentielle Vorteile:
 - an sehr vielen Stellen kleinere Bitbreite für Differenzwerte möglich
 - Wiederholung gleicher Differenzwerte ermöglicht effektive Kompression mit verlustfreien Verfahren
- Verlustfrei, in JPEG kombiniert mit weiteren (verlustbehafteten) Techniken

JPEG-Kodierung: Entropie-Kompression

Vorletzter Schritt: "Statistische Modellierung"

- JPEG-Schritte
- » DC-Koeffizienten: Prädiktive Codierung (*Differenzen*)
- » AC-Koeffizienten: im Wesentlichen Lauflängen-Codierung
- Letzter Schritt: Entropie-Kodierung
 - Wahl zwischen Huffman-Algorithmus und arithmetischer Kompression
 - Getrennt für DC- und AC-Koeffizienten
- Woher kommen die Häufigkeitsverteilungen?
 - Zwei Beispielverteilungen im JPEG-Standard beschrieben
 - Alternative: Durch zusätzlichen Durchlauf über die Daten errechnen

JPEG Datenströme

- Ausgabe der JPEG-Kompression
 - Besteht aus Komponenten
 - Getrennt durch marker (2 Bytes, erstes Byte xFF)
- Beispiele für Marker:
 - Start of image (SOI)
 - End of image (EOI)
 - Start of frame, baseline (SOF₀)
 - Start of frame, extended sequential (SOF₁)
 - Start of frame, progressive (SOF₂)
 - Start of frame, lossless (SOF₃)
 - Define Huffman table (DHT)
 - Define quantization tables (DQT)
 - Define restart interval (DRI)
 - Application specific (APP₀ APP₁₅)

— ...

JFIF Dateiformat

- Der JPEG-Standard definiert das Dateiformat nicht im Detail.
- De-Facto-Standard: JFIF (JPEG File Interchange Format)
 - inoffiziell (David Hamilton 1992)
- Neuer offizieller Standard: SPIFF (Still Picture Interchange File Format)
 - von der JPEG
 - spät eingeführt, kompatibel mit JFIF, aber wesentlich flexibler
- JFIF definiert:
 - "Signatur" zur Identifikation von JPEG-Dateien ("JFXX")
 - Farbraum
 - Pixeldichte
 - Vorschaubilder ("Thumbnails")
 - Zusammenhang Pixel Abtastfrequenz