2. Digitale Codierung und Übertragung

2.1 Informationstheoretische Grundlagen

- 2.2 Verlustfreie universelle Kompression
- 2.3 Digitalisierung, Digitale Medien

Weiterführende Literatur zum Thema Informationstheorie:

Taschenbuch Medieninformatik Kapitel 2

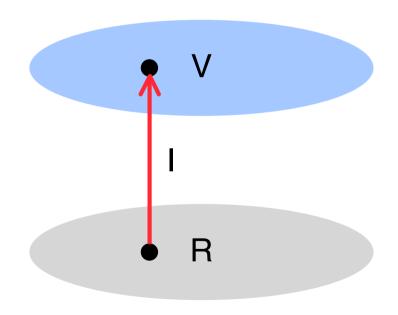
Herbert Klimant, Rudi Piotraschke, Dagmar Schönfeld: Informations- und Kodierungstheorie, Teubner 2003

Information und Repräsentation

- V = Menge von Werten (Interpretationen, Bedeutungen)
- R = Menge von *Repräsentationen* (Darstellungswerten)
- Abbildung

I : R → V Interpretation

Umkehrung zur Interpretation: Repräsentationsbeziehung I⁻¹: V → R



(nach Broy: Informatik Teil I)

Klassische Beispiele:

V = Zahlwerte, R = Binärzahlen

V = Abbildungen, R = Programme

Medienbezogene Beispiele:

V = Begriffe, Objekte

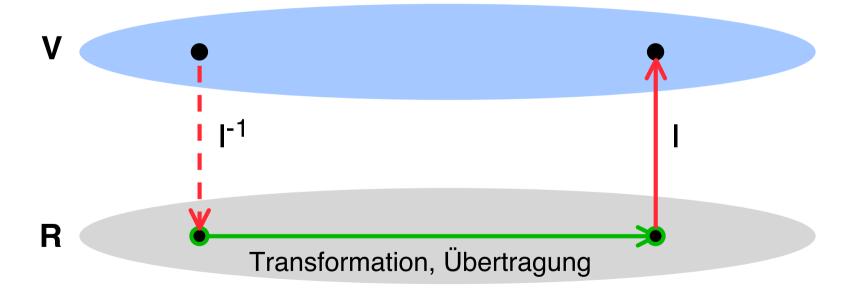
R = Bilder, R = Klänge, ...

Konkrete medienbezogene Beispiele:

Martinshorn/Blaulicht, Rote Ampel, "Halt!"

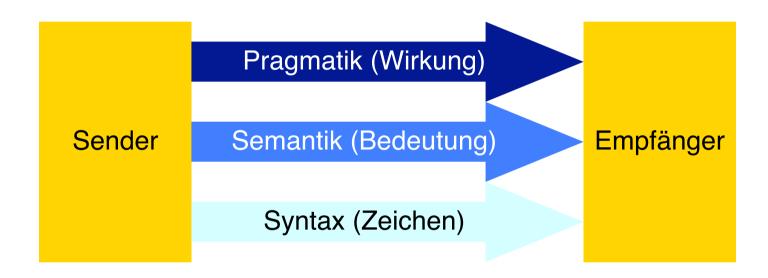
Informationsverarbeitung

- Information ist ein abstrakter Begriff.
- Computer verarbeiten immer Repräsentationen.
- Informationsverarbeitung ist Repräsentationsverarbeitung.
- Medien sind spezielle Repräsentationen von Information.



Semiotische Ebenen

- Semiotik = Theorie der Zeichen und Symbole
- Klassische Terminologie der Semiotik: Syntax, Semantik, Pragmatik



Bezug zur traditionellen Informatik:

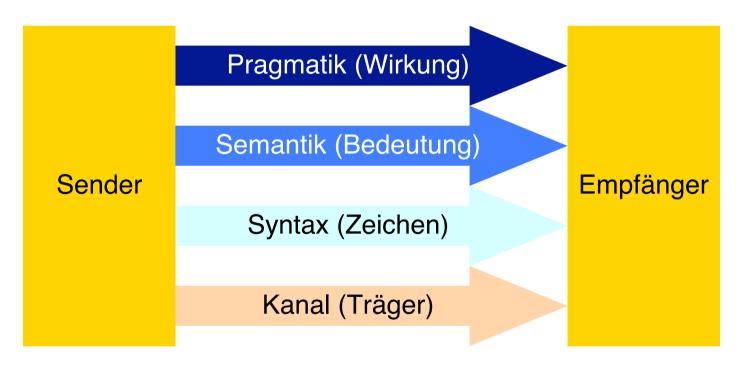
Syntax = Repräsentationen (Menge R)

Semantik = Informationsgehalt (Menge V)

Pragmatik wird als irrelevant angesehen

Semiotische Ebenen in der Medieninformatik

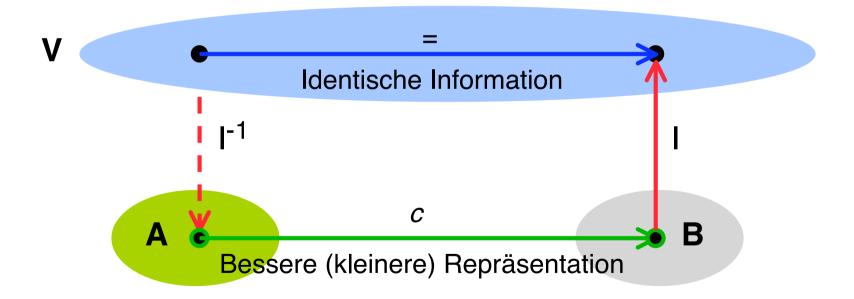
- Für Medien müssen alle semiotischen Ebenen betrachtet werden.
 - Z.B. Wirkung eines Textes abhängig von der grafischen Darstellungsform (Farbe, Größe, Platzierung)



- Für die technische Realisierung sind Eigenschaften des physikalischen Trägers der Repräsentation ebenfalls wesentlich.
 - Z.B. Speicherbedarf, Frequenzspektrum

Interpretation und Codierung

- Es gibt Codierungen verschiedener Effizienz für die gleiche Information.
- Die Informationstheorie betrachtet eine Informationsquelle nach Eigenschaften, die eine bessere (kürzere) Codierung erlauben.
- Informationsquelle wird durch einen Basiszeichenvorrat mit zusätzlichen Informationen (z.B. Häufigkeitsverteilung) erfasst.

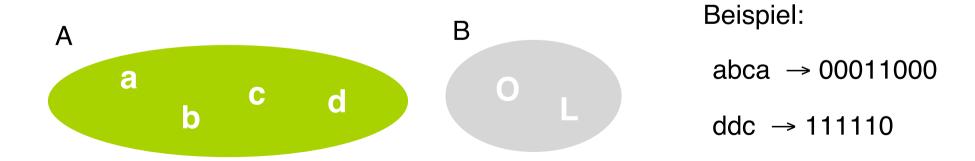


Stochastische Informationstheorie: Zeichenvorräte und Codierung

- Ein Zeichenvorrat ist eine endliche Menge von Zeichen.
- Eine Nachricht (im Zeichenvorrat A) ist eine Sequenz von Zeichen aus A
- Seien A und B Zeichenvorräte.
 Eine Codierung c ist eine Abbildung von Nachrichten in A auf Nachrichten in B.

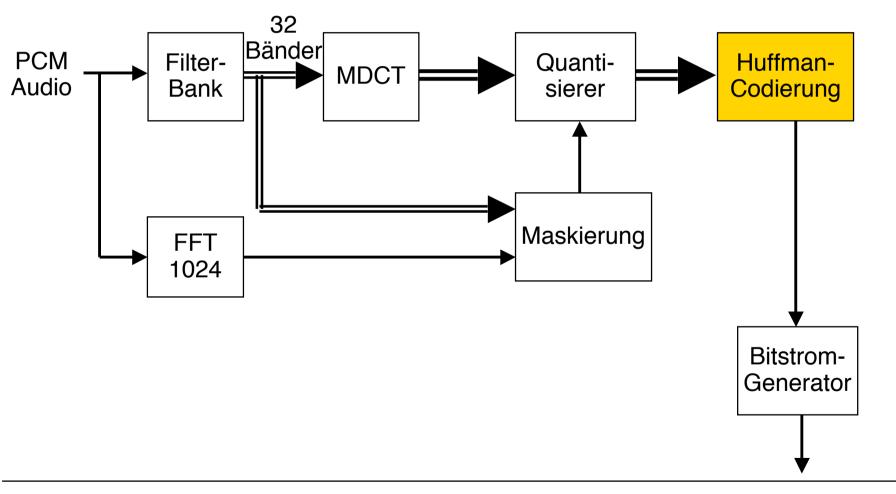
$$c: A \to B^*$$
 ($B^*: Zeichenreihen über B)$

- Wir beschränken uns meist auf *binäre* Codierungen, d.h. B = { 0, 1 }
- Die *Informationstheorie* (nach *Shannon*) befasst sich mit Nachrichtenquellen auf der Ebene der Syntax aus *stochastischer* Sicht
 - Zeichen und zugehörige Codierung haben immer identische Interpretation



Einschub: Motivation für Informationstheorie

- Aufbau eines MPEG-Layer III (MP3) Encoders
 - Details siehe später!



Entropie (1)

- Annahme Stochastische Nachrichtenquelle: Wir kennen die Häufigkeitsverteilung der Zeichen in den Nachrichten.
- Entscheidungsgehalt (Entropie) der Nachrichtenquelle:
 - Wie viele Ja/Nein-Entscheidungen entsprechen dem Auftreten eines Einzelzeichens?
 - Eine Ja/Nein-Entscheidung = 1 "bit"
- Beispiele:

Quelle 1	Zeichen <i>a</i>	Α	В	С	D
	Häufigk. p_a	1	0	0	0
	X_a	0	-	-	_

$$p_a$$
 = Häufigkeit

 x_a = Zahl der Entscheidungen

 2^{X_a} = $1/p_a$
 x_a = Id $(1/p_a)$

(Logarithmus zur Basis 2)

Entropie (2)

• Durchschnittlicher Entscheidungsgehalt je Zeichen: Entropie H

$$H = \sum_{a \in A} p_a \, ld\left(\frac{1}{p_a}\right) \qquad \text{mit } x_a = \text{Id } (1/p_a): \quad H = \sum_{a \in A} p_a x_a$$

Quelle 1 Zeichen
$$a$$
 A B C D Häufigk. p_a 1 0 0 0 $\frac{1}{X_a}$ 0 - - - $\frac{1}{A_a}$ H= 0

Quelle 2 Zeichen a A B C D Häufigk. $\frac{1}{A_a}$ 0.25 0.25 0.25 0.25 $\frac{1}{A_a}$ 2 2 2 2 $\frac{1}{A_a}$ H= 2

Quelle 3 Zeichen $\frac{1}{A_a}$ A B C D Häufigk. $\frac{1}{A_a}$ 0.5 0.25 0.125 0.125 $\frac{1}{A_a}$ 1 2 3 3 $\frac{1}{A_a}$ H= 1.75

Entropie ist Maß für "Unordnung", "Zufälligkeit"

Wortlängen und Redundanz

• Eine (Binär-)Codierung der Nachrichten einer stochastischen Nachrichtenquelle ergibt eine *durchschnittliche Wortlänge L*.

$$L = \sum_{a \in A} p_a \left| c(a) \right|$$

Quelle 2	Zeichen <i>a</i> Häufigk. <i>p_a</i>	A	В	C	D	H=	2
	Code $c(a)$		0.25 01	0.25 10	0.25 11	L =	2
Quelle 3	Zeichen <i>a</i>	Α	В	С	D	H=	1 75
	Häufigk. p_a	0.5	0.25	0.125	0.125	/	
	Code c(a)	00	01	10	11	<i>L</i> =	_

- Redundanz = L H
- Redundanz ist ein Maß für die Güte der Codierung: möglichst klein!

Optimale Codierung

- Eine Codierung ist optimal, wenn die Redundanz 0 ist.
- Durch geeignete Codierung (z.B. Wortcodierung statt Einzelzeichencodierung) kann man die Redundanz beliebig niedrig wählen.
- Redundanz ermöglicht andererseits die Rekonstruktion fehlender Nachrichtenteile!
 - B ispi I: Natürlich Sprach
 - Beispiel: Fehlererkennende und -korrigierende Codes (z.B. Paritätsbits)

Quelle 3	Zeichen <i>a</i> Häufigk. <i>p_a</i> Code <i>c(a)</i>	A 0.5 00	B 0.25 01	C 0.125 10	D 0.125 11	H = L =	_
Quelle 3	Zeichen <i>a</i> Häufigk. <i>p_a</i> Code <i>c'(a)</i>	A 0.5 0	B 0.25 10	C 0.125 110	D 0.125 111	H = L =	1.75 1.75

2. Digitale Codierung und Übertragung

- 2.1 Informationstheoretische Grundlagen
- 2.2 Verlustfreie universelle Kompression

2.3 Digitalisierung

Weiterführende Literatur zum Thema Kompression:

Taschenbuch Medieninformatik Kapitel 2

Herbert Klimant, Rudi Piotraschke, Dagmar Schönfeld: Informations- und Kodierungstheorie, Teubner 2003

Khalid Sayood: Introduction to Data Compression, 2nd. ed., Morgan Kaufmann 2000

Darstellungsräume, Darstellungswerte

- Jedes (Einzel-)Medium definiert einen Darstellungsraum (= Menge der möglichen Repräsentationen R).
- Eine konkrete Repräsentation einer Information ist ein Darstellungswert innerhalb des Darstellungsraums.
- Für Perzeptionsmedien:
 - Ein Darstellungsraum richtet sich an einen bestimmten Sinn des Menschen.

Beispiele:

- Text: Darstellungsraum = Menge aller möglichen Zeichenfolgen
- Bild: Darstellungsraum = Menge aller möglichen Belegungen der Wiedergabefläche mit Farbinformationen
- Sprache: Darstellungsraum = (sehr spezifische und komplexe) Teilmenge der möglichen Verteilungen von Luftdruck über die Zeitachse

Speicherbedarf multimedialer Information

- Bsp. Schrift
 - Laufschrift (8 bit/Zeichen, 40 Zeichen/s): 320 bit/s
- Bsp. Audio-Signale
 - Sprachsignal niedriger Qualität (Mono, 8 bit, 11 kHz): 88 kbit/s
 - CD-Qualität (Stereo, 16 bit, 44,1 kHz): 1,4 Mbit/s
- Bsp. Bilder (9x13cm = 1062x1536 Pixel)
 - Schwarz/weiß (1 bit Farbtiefe): 200 kByte (1 Byte = 8 bit)
 - TrueColor (24 bit Farbtiefe): 4,9 MByte
- Bsp. Video (ohne Ton)
 - 720 x 525 Pixel, 25 Bilder/s, 16 bit Farbtiefe: 151,2 Mbit/s
 - 1280 x 720 Pixel, 60 Bilder/s, 24 bit Farbtiefe: 1,32 Gbit/s
- Kompression der Information ist extrem wichtig!

Pixel= Bildpunkt

Kompressionsverfahren: Übersicht

- Klassifikationen:
 - Universell vs. speziell (für bestimmte Informationstypen)
 - » Speziell für bestimmte technische Medien (Bild, Ton, Bewegtbild)
 - Verlustfrei vs. Verlustbehaftet
 - In diesem Kapitel: nur universelle & verlustfreie Verfahren
- Im folgenden vorgestellte Verfahren:
 - Statistische Verfahren:

- » Huffman-Codierung
- » Arithmetische Codierung
- Zeichenorientierte Verfahren:
 - » Lauflängencodierung (RLE Run Length Encoding)
 - » LZW-Codierung

Grundidee zur Huffman-Codierung

- Zeichen größerer Häufigkeit werden durch kürzere Codes repräsentiert
 - vgl. Morse-Code
- Das führt zu einem Code variabler Wortlänge:
 - Kein Codewort darf Anfang eines anderen sein (Fano-Bedingung)
- In optimalem Code müssen die beiden Symbole der niedrigsten Häufigkeit mit gleicher Länge codiert sein.

"Beweis"-Skizze:

- Wären die Längen verschieden, könnte man das längere Wort bei der Länge des kürzeren abschneiden
 - » Dann sind die beiden Codes verschieden (sonst wäre Fano-Bedingung vorher verletzt gewesen)
 - » Kein anderes Codewort kann länger sein (da Zeichen niedrigster Häufigkeit), also kann die Kürzung nicht die Fano-Bedingung verletzen
- Dann hätten wir einen neuen Code mit kleinerer durchschnittlicher Wortlänge!

Huffman-Codierung (1)

- Gegeben: Zeichenvorrat und Häufigkeitsverteilung
- Ergebnis: Codierung (optimal, wenn alle Häufigkeiten Kehrwerte von Zweierpotenzen sind)
- Wiederholte Anwendung dieses Schritts auf die Häufigkeitstabelle:
 - Ersetze die beiden Einträge niedrigster Häufigkeit durch einen Codebaum mit zwei Ästen "0" und "L" und trage die Summe der Häufigkeiten als Häufigkeit dafür ein.

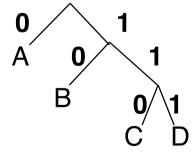
Zeichen	Α	В	С	D
Häufigkeit	0.5	0.25	0.125	0.125
Zeichen	Α	В	0 /\ 1 C D	
Häufigkeit	0.5	0.25	0.25	

David Huffman 1951

Huffman-Codierung (2)

Zeichen	Δ	R	0 /\1	
Zeichen		ט	0 0	
Häufigkeit	0.5	0.25	0.25	

		0/\1 B 0/\1	
Zeichen	Α	C D	
Häufigkeit	0.5	0.5	



Resultierender Codebaum

Huffman-Codierung (3)

- Eine Nachricht, die sich an die gegebene Häufigkeitsverteilung hält: ababacadaabacdba (Länge = 16 Zeichen)
- Codierung mit festen Wortlängen (z.B. a = 00, b = 01, c = 10, d = 11)
 Länge 32 bit

Experiment: Huffman-Kompression von Bildern

Grautonbild, 256 x 256 Pixel, 8 bit (d.h. 256 Graustufen)

Unkomprimiert: 65.536 Bytes

Mit Huffman kodiert: 40.543 Bytes ca. 38% Reduktion

Einfacher "Zusatztrick":

 Differenz zwischen benachbarten Pixeln speichern und Huffman dann anwenden

33.880 Bytes ca. 51% Reduktion

- Keine universelle Kompression mehr, sondern speziell für Pixelbilder
- Solche "semantischen Kodierungen" siehe später!