Interaction Design (User Experience Design I)

Chapter 10 (July 20th, 2017, 9am-12pm): Beyond the Desktop

This lecture is focusing

on four types of interaction "beyond the desktop":

- (1) Shareable interfaces
- (2) Tangible interfaces
- (3) Wearable interfaces
- (4) Robotic interfaces

• . . .

Tangible, Embedded and Embodied Interaction (TEI)

(1) Shareable interfaces

- Shareable interfaces are designed for more than one person to use
 - provide multiple inputs and sometimes allow simultaneous input by co-located groups
 - large wall displays where people use their own pens or gestures
 - interactive tabletops where small groups interact with information using their fingertips, e.g., Mitsubishi's DiamondTouch and Sony's Smartskin

A smartboard

DiamondTouch Tabletop

Advantages

- Provide a large interactional space that can support flexible group working
- Can be used by multiple users
 - can point to and touch information being displayed
 - simultaneously view the interactions and have same shared point of reference as others
- Can support more equitable participation compared with groups using single PC

The Drift Table

https://www.youtube.com/watch?v=uRKOypmDDBM

Research and design issues

- More fluid and direct styles of interaction involving freehand and pen-based gestures
- Core design concerns include whether size, orientation, and shape of the display have an effect on collaboration
- horizontal surfaces compared with vertical ones support more turn-taking and collaborative working in co-located groups
- Providing larger-sized tabletops does not improve group working but encourages more division of labor

(2) Tangible interfaces (TUI)

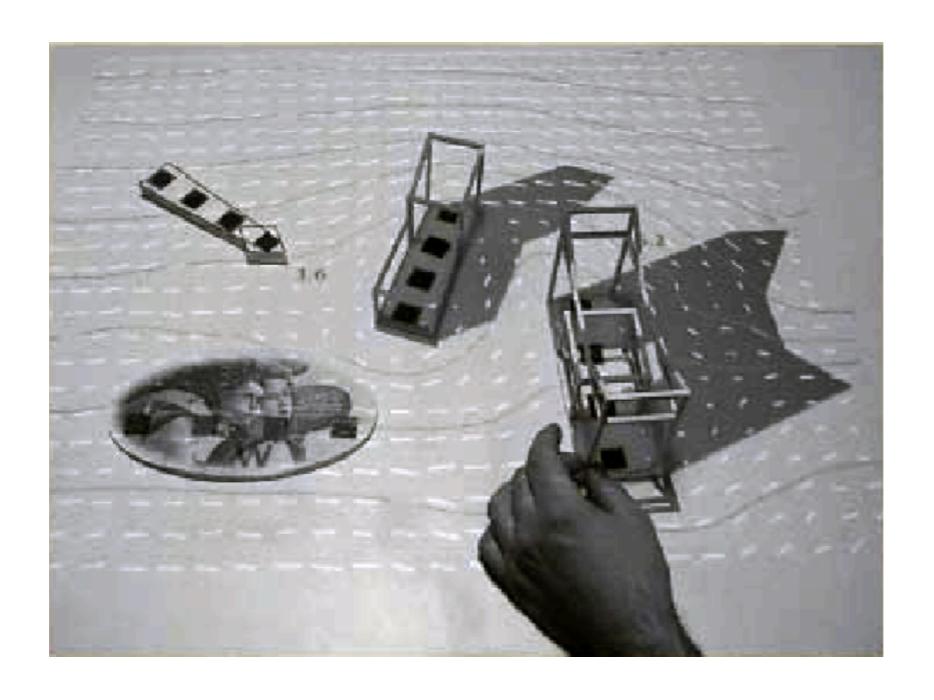
- Type of sensor-based interaction, where physical objects, e.g., bricks, are coupled with digital representations
- When a person manipulates the physical object/s it causes a digital effect to occur, e.g. an animation
- Digital effects can take place in a number of media and places or can be embedded in the physical object

SIMON & IMOGEN'S HOUSE

Examples

Chromarium cubes

- when turned over digital animations of color are mixed on an adjacent wall
- facilitates creativity and collaborative exploration


Tangible Video Editor

- depict video clips embedded in the blocks
- vary depending on how they are connected together

Urp

- physical models of buildings moved around on tabletop
- used in combination with tokens for wind and shadows -> digital shadows surrounding them to change over time

Urp (1999)

Chromarium cubes (2003)

Tangible Video Editor (2007)

https://static1.squarespace.com/static/4f57841c24ac1bb6d947d820/50f70505e4b02f24b699978f/50f70505e4b0b5231e4d1b63/1358365963068/TVE-1.jpg

Reactable

https://www.youtube.com/watch?v=Mgy1S8qymx0

Benefits

- Can be held in both hands and combined and manipulated in ways not possible using other interfaces
 - allows for more than one person to explore the interface together
 - objects can be placed on top of each other, beside each other, and inside each other
 - encourages different ways of representing and exploring a problem space
- People are able to see and understand situations differently
 - can lead to greater insight, learning, and problemsolving than with other kinds of interfaces
 - can facilitate creativity and reflection

Research and design issues

- Develop new conceptual frameworks that identify novel and specific features
- The kind of coupling to use between the physical action and digital effect
 - If it is to support learning then an explicit mapping between action and effect is critical
 - If it is for entertainment then can be better to design it to be more implicit and unexpected
- What kind of physical artefact to use
 - Bricks, cubes, and other component sets are most commonly used because of flexibility and simplicity
 - Stickies and cardboard tokens can also be used for placing material onto a surface

(3) Wearable interfaces

- First developments was head- and eyewear-mounted cameras that enabled user to record what seen and to access digital information
- Since, jewellery, head-mounted caps, smart fabrics, glasses, shoes, and jackets have all been used
 - provide the user with a means of interacting with digital information while on the move
- Applications include automatic diaries and tour guides

Steve Mann - pioneer of wearables

Steve Mann's "wearable computer" and "reality mediator" inventions of the 1970s have evolved into what looks like ordinary eyeglasses.

Research and design issues

Comfort

 needs to be light, small, not get in the way, fashionable, and preferably hidden in the clothing

Hygiene

 is it possible to wash or clean the clothing once worn?

Ease of wear

 how easy is it to remove the electronic gadgetry and replace it?

Usability

 how does the user control the devices that are embedded in the clothing?

https://www.youtube.com/watch?v=g3XPUdW9Ryg

https://www.youtube.com/watch?v=9hu8MNuvCHE

(4) Robotic interfaces

Four types

- remote robots used in hazardous settings
- domestic robots helping around the house
- pet robots as human companions
- sociable robots that work collaboratively with humans, and communicate and socialize with them – as if they were our peers

Advantages

- Pet robots have therapeutic qualities, being able to reduce stress and loneliness
- Remote robots can be controlled to investigate bombs and other dangerous materials

Research and design issues

- How do humans react to physical robots designed to exhibit behaviors (e.g., making facial expressions) compared with virtual ones?
- Should robots be designed to be human-like or look like and behave like robots that serve a clearly defined purpose?
- Should the interaction be designed to enable people to interact with the robot as if it was another human being or more human-computer-like (e.g., pressing buttons to issue commands)?

Summary: Which interface?

- Is multimedia better than tangible interfaces for learning?
- Is speech as effective as a command-based interface?
- Is a multimodal interface more effective than a monomodal interface?
- Will wearable interfaces be better than mobile interfaces for helping people find information in foreign cities?
- Are virtual environments the ultimate interface for playing games?
- Will shareable interfaces be better at supporting communication and collaboration compared with using networked desktop PCs?

Summary: Which interface?

- Will depend on task, users, context, cost, robustness, etc.
- Much system development will continue for the PC platform, using advanced GUIs, in the form of multimedia, web-based interfaces, and virtual 3D environments
 - Mobile interfaces have come of age
 - Increasing number of applications and software toolkits available
 - Speech interfaces also being used much more for a variety of commercial services
 - Appliance and vehicle interfaces becoming more important
 - Shareable and tangible interfaces entering our homes, schools, public places, and workplaces

General Summary

- Many innovative interfaces have emerged post the WIMP/GUI era, including speech, wearable, mobile, and tangible
- Many new design and research questions need to be considered to decide which one to use
- Web interfaces are becoming more like multimediabased interfaces
- An important concern that underlies the design of any kind of interface is how information is represented to the user so they can carry out ongoing activity or task

References:

- [1] Buxton, W. Sketching User Experiences, Morgan Kaufmann 2007.
- [2] Blom, J & Chipchase, J: Contextual and cultural challenges for user mobility research, *ACM Press* 2005.
- [3] CHI'10 Panel Discussion on User Research, 2010.
- [4] Copenhagen Institute of Interaction Design, User Research Workshop 2008.
- [5] Jonas, W. A Scenario for Design, MIT Press 2001.
- [6] Norman, D. The Psychology of Everyday Things, Basic Books 1988.
- [7] Moggridge, B. Designing Interactions, MIT Press, 2006.
- [8] Rogers, Y., Preece, J. & Sharp, H. Interaction Design, Wiley & Sons 2011.