Computergrafik 2: Filtern im Ortsraum

Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München

Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen der Bildverarbeitung. Pearson Studium, 2005.)

Vorlesungen

Datum	Thema
24.4.	Einführung, Organisatorisches (Übungen, Klausur)
1.5./8.5.	keine Vorlesungen (wegen 1. Mai und CHI-Konferenz)
15.5.	Abtastung von Bildern, Punktbasierte Verfahren der Bildverbesserung
22.5.	Licht, Farbe, Farbmanagement
30.5.	Konvolution, Filterung im Ortsraum (Verschiebung wegen Pfingstdienstag)
5.6.	Fouriertransformation: Grundlagen
12.6.	Filterung im Frequenzraum
19.6.	Kanten, Linien, Ecken
26.6.	Segmentierung
3.7.	Segmentierung, Morphologische Operationen
10.7.	Klassifikation
17.7.	Image Matching
24.7.	Klausur (Hörsaal M 018 im Hauptgebäude, 14-16 Uhr)

Themen heute

- Konvolution und Korrelation
- Lineare Filterung
- Nichtlineare Filterung
- Interpolation

Filterung im Ortsraum

- Lineare Filterung
- m×n Filtermaske
- Lokale Umgebung
- Vorgegebene
 Operation auf Pixeln
 in lokaler Umgebung
- Skalarprodukt
 f(x-1,y-1)*w(-1,-1) +
 ... + f(x,y)*w(0,0) +
 ... + f(x+1,y+1)* w(1,1)

Abbildung: © R. C. Gonzalez & R. E. Woods, Digital Image Processing

Filtern im Ortsraum

• Filterung als gewichtetes Mittel

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

- m×n Filtermaske mit m = 2a+1, n = 2b+1
- M×N Bild mit M Zeilen und N Spalten
- Üblicherweise
 - Filtermaske begrenzt, Gewicht normalisiert (sum=1)
 - Seitenlänge des Filters ungerade

Filtergrößen

- Stärke der Glättung als Effekt der Filtergröße
 - Bild $M \times N = 500 \times 500$
 - quadratisches Boxfilter

Abbildung: © R. C. Gonzalez & R. E. Woods, Digital Image Processing

Tiefpass: Wirkung

Nützlich z.B. gegen Rauschen und Alias-Effekte

Hochpass: Wirkung

Nützlich zum Scharfzeichnen und Kanten finden

Hintereinanderschreiben von Pixeln

- 2-dimensionales Bild (M Zeilen, N Spalten) wird zu MN Spaltenvektor
- manchmal von Vorteil beim Rechnen

f(0,0)f(1,0)f(N-1,0)f(0,1)f =f(N-1,0)f(0, M-1)f(N-1, M-1)

Lineare Operatoren

• Definition eines linearen Operators O(.)

$$O(\alpha \vec{f} + \beta \vec{g}) = \alpha O(\vec{f}) + \beta O(\vec{g})$$

für alle Skalare α , β

 Superpositionsprinzip: komplexe Signale können in einfachere Komponenten zerlegt werden

Nicht-Lineare Operatoren?

• Definition eines linearen Operators O(.)

$$O(\alpha \vec{f} + \beta \vec{g}) = \alpha O(\vec{f}) + \beta O(\vec{g})$$

für alle Skalare α , β

 Beispiel eines nicht-linearen Operators: Square sq(αf + βg) =?= α sq(f) + β sq(g)

Gegenbeispiel:
$$\alpha = 1$$
, $\beta = 1$, $f = \{1\}$, $g = \{3\}$
sq($\{1\} + \{3\}$) = sq($\{4\}$) = $\{16\}$
sq($\{1\}$) + sq($\{3\}$) = $\{1\} + \{9\} = \{10\}$

Linearer Operator als Matrix

Linearer operator O lässt sich auch als Matrix ausdrücken:

Seien x,y die hintereinandergeschriebenen Pixel zweier Bilder, dann ist

 $\vec{y} = A\vec{x}$

Jeder Eintrag A_{i,j} gibt an, mit welchem Gewicht Pixel j aus x auf Pixel i in y abgebildet wird

Verschiebungsinvariante Operatoren

- ... sind lineare Operatoren, deren Wirkung unabhängig vom Ort ist
- Beispiel: Filtermaske wirkt überall im Bild gleich
- Beispiel: gleichmäßige Unschärfe im Bild durch Bewegung der Kamera

Konvolution (Faltung)

 Seien f, g abgetastete Bilder mit unendlicher Größe, m,n, Skalare

$$(g*f)(m,n) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} g(i,j)f(m-i,n-j)$$

Heißt Konvolution der Funktion f mit g

- g heißt die Konvolutionsfunktion
- Funktioniert so nur für unendlich große Bilder

Eigenschaften der Konvolution

- Linear & verschiebungsinvariant
- Kommutativ & assoziativ

$$\begin{bmatrix} g_1 * g_2 \end{bmatrix} (m, n) = \begin{bmatrix} g_2 * g_1 \end{bmatrix} (m, n) g_1 * (\begin{bmatrix} g_2 * g_3 \end{bmatrix} (m, n)) = \begin{bmatrix} g_1 * g_2 \end{bmatrix} (m, n) * g_3 (m, n)$$

 D.h. wir können mehrere Konvolutionen vorab kombinieren und dann gemeinsam anwenden

Konvolution vereinfacht

Hat die Konvolutionsfunktion g nur einen begrenzten Bereich, in dem g ≠ 0, dann heißt dieser Bereich Kern von g (kernel)

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	0	-1	0	0	0
0	0	0	1	0	-1	0	0	0
0	0	0	1	0	-1	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Konvolution anschaulich

Kernel wird um 180° rotiert Worst case Aufwand im Ortsraum: N⁴ für Kantenlänge N des Bildes

Verwendung der Konvolution

• Sobel-Operator: Kanten finden

• "erste Ableitung", "Differenzenquotient"

Konvolution des Dirac-Impulses

Dirac-Impuls

- = Einheitsimpuls
- = unit impulse

- = Punktverteilungsfunktion
- = Point Spread Function (PSF)

Abbildung: © R. C. Gonzalez & R. E. Woods, Digital Image Processing

Konvolution des Dirac-Impulses

Dirac-Impuls = Einheitsimpuls = unit impulse

Padded f

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Cropped convolution result

Punktantwort

- = Punktverteilungsfunktion
- = Point Spread Function (PSF)

Abbildung: © R. C. Gonzalez & R. E. Woods, Digital Image Processing

Origin

1

0

()

f(x, y)

0

()

w(x, y)

2

5

7

3

6

9

Punktantwort (Point Spread Function, PSF)

- Faltung eines einzelnen Dirac-Impulses
 - Bild mit einem einzigen weißen Pixel
- Abgetastetes Bild = Folge von Dirac-Impulsen * Pixelhelligkeiten
- → Gesamtwirkung durch PSF vollständig beschrieben
- → falls PSF umkehrbar, kann Wirkung rückgängig gemacht werden
- PSF kann manchmal experimentell bestimmt werden

Punktantwort (Point Spread Function, PSF)

Alternative Repräsentation der Faltung

$$(f*h)(\alpha,\beta) = \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x,y) \cdot h(x,\alpha,y,\beta) \left(= \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x,y) \cdot h^*(x-\alpha,y-\beta) \right)$$

• Einheitsimpuls an Pixel (a,b)

$$\delta(x-a, y-b) = \begin{cases} 1 & x = a \land y = b \\ 0 & sonst \end{cases}$$

Punktantwort

$$(\delta * h)(\alpha, \beta) \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} \delta(x - a, y - b) \cdot h(x, \alpha, y, \beta) = h(a, \alpha, b, \beta)$$

"Bild" = Einheitsimpuls an (a,b) PSF

Punktantwort (Point Spread Function, PSF)

• Digitales Bild als Summe seiner Pixel

$$f(x,y) = \sum_{a=0}^{N-1} \sum_{b=0}^{M-1} f(a,b) \cdot \delta(x-a,y-b)$$

 Das Resultat einer linearen Filterung ist die Überlagerung der Punktantworten

$$g(\alpha,\beta) = \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x,y) \cdot h(x,\alpha,y,\beta)$$

$$= \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} \sum_{a=0}^{N-1} \sum_{b=0}^{M-1} f(a,b) \cdot \delta(x-a,y-b) \cdot h(x,\alpha,y,\beta)$$

Korrelation

 Seien f, g abgetastete Bilder mit unendlicher Größe, m,n, Skalare

$$(g*f)(m,n) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} g(i,j)f(i+m,j+n)$$

Heißt Korrelation der Funktion f mit g

- g heißt die Korrelationsfunktion
- Funktioniert so nur für unendlich große Bilder

k	0	rr			fi	h r			Pa	ıdd	ed	f													
			CI		LIV				0	0	0	0	0	0	0	0	0								
									0	0	0	0	0	0	0	0	0								
			_	_					0	0	0	0	0	0	0	0	0		17 -			. . 1			
¥	~ (Drig	gin	<i>f</i> (<i>x</i> , y	')			0	0	0	0	0	0	0	0	0		ĸe	ern		CNT			
0	0	0	0	0					0	0	0	0	1	0	0	0	0		ge	dre	ent	, SC	nst	wie	
0	0	0	0	0		w	(<i>x</i> ,	y)	0	0	0	0	0	0	0	0	0		be	i K	on	volu	utior	ר	
0	0	1	0	0		1	2	3	0	0	0	0	0	0	0	0	0								
0	0	0	0	0		4	5	6	0	0	0	0	0	0	0	0	0								
0	0	0	0	0		7	8	9	0	0	0	0	0	0	0	0	0								
				(a)									(b)												
				()									` '												
2	<u> </u>	niti	ial p	posi	itio	n fo	or u	v	Fu	ıll c	corr	ela	tion	ı re	sul	t		Cr	op	pec	l co	rrel	atio	n res	sult
1	$\frac{-1}{2}$	$\frac{1}{3}$	ial p	oosi 0	itio: 0	n fo O	or u 0	0	Fι 0	ill c 0	orr 0	ela 0	tion 0	1 re 0	sul 0	t 0	0	C 1 0	op 0	pec 0	i co 0	orrel 0	atio	n res	sult
1	$\frac{-1}{2}$	niti 31 6	ial p 0 0	0 0	i tio : 0 0	n fo 0 0	or u 0 0	0 0	Fu 0 0	ill c 0 0	0 0	rela 0 0	tion 0	1 re 0 0	sul 0 0	t 0 0	0 0	Cr 0 0	op 0 9	pec 0 8	1 co 0 7	orrel 0 0	atio	n res	sult
1	- I 2 5 8	niti 3 6 9	ial p 0 0 0	0 0 0	i tio 0 0 0	n fo 0 0 0	or u 0 0 0	0 0 0	Fu 0 0 0	111 c 0 0 0	0 0 0	ela 0 0 0	tion 0 0 0	n re 0 0 0	sul 0 0 0	t 0 0 0	0 0 0	Cr 0 0	op 0 9 6	pec 0 8 5	1 co 0 7 4	orrel 0 0 0	atio	n res	sult
1 14 1 <u>7</u> 0	- I $\overline{2}$ 5 - $8 0$	niti 3 6 9	ial p 0 0 0	0 0 0 0	itio 0 0 0 0	n fo 0 0 0	or u 0 0 0 0	0 0 0 0	Ft 0 0 0	111 c 0 0 0 0	0 0 0 0	rela 0 0 0 9	tion 0 0 0 8	0 0 0 0 7	sul 0 0 0 0	t 0 0 0	0 0 0	Ct 0 0 0	0 9 6 3	0 8 5 2	l co 0 7 4 1	0 0 0 0 0	atio	n res	sult
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- I 2 5 8 0 0	niti 3 6 9 0	ial p 0 0 0 0	0 0 0 0 0	itio 0 0 0 0	n fo 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	Fu 0 0 0 0	ill c 0 0 0 0	0 0 0 0 0	ela 0 0 0 9 6	tion 0 0 8 5	0 0 0 7 4	sul 0 0 0 0	t 0 0 0 0	0 0 0 0	Cr 0 0 0 0	0 9 6 3 0	0 8 5 2 0	1 co 0 7 4 1 0	0 0 0 0 0 0	atio	n res	sult
1 1 1 4 7 0 0 0 0	-I 5 8 0 0 0	niti 31 61 9 0 0	ial p 0 0 0 0 0	0 0 0 0 0 1 0	itio: 0 0 0 0 0	n fo 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	Fu 0 0 0 0 0	111 c 0 0 0 0 0	0 0 0 0 0	rela 0 0 9 6 3	tion 0 0 8 5 2	0 0 0 7 4 1	sul 0 0 0 0 0	t 0 0 0 0 0 0	0 0 0 0 0	Cr 0 0 0 0	0 9 6 3 0	0 8 5 2 0	1 co 0 7 4 1 0	0 0 0 0 0	atio	n res	sult
1 1 1 4 7 0 0 0 0	- I 2 5 8 0 0 0 0 0	niti 31 6 9 0 0 0	ial p 0 0 0 0 0 0	0 0 0 0 1 0	itio: 0 0 0 0 0	n fo 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	Fu 0 0 0 0 0 0 0	111 c 0 0 0 0 0 0 0	0 0 0 0 0 0	rela 0 0 9 6 3 0	tion 0 0 8 5 2 0	n re 0 0 7 4 1 0	sul 0 0 0 0 0 0	t 0 0 0 0 0 0 0	0 0 0 0 0 0	Cr 0 0 0 0	0 9 6 3 0	0 8 5 2 0	1 co 0 7 4 1 0	0 0 0 0 0	atio	n res	sult
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- I 2 5 8 0 0 0 0 0 0	niti 3 6 9 0 0 0 0	ial p 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0	itio: 0 0 0 0 0 0	n fo 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	Ft 0 0 0 0 0 0 0	111 c 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	rela 0 0 9 6 3 0 0	tion 0 0 8 5 2 0 0	n re 0 0 7 4 1 0 0	sul 0 0 0 0 0 0 0	t 0 0 0 0 0 0 0	0 0 0 0 0 0 0	Cr 0 0 0	0 9 6 3 0	0 8 5 2 0	1 co 0 7 4 1 0	0 0 0 0 0	atio	n res	sult

Abbildung: © R. C. Gonzalez & R. E. Woods, Digital Image Processing

Verwendung der Korrelation

Ausgangsbild (f)

Ergebnis (f**O**g)

...normalisiert

Rohs / Kratz, LMU München

Unterschiede Konvolution / Korrelation

- Konvolution und Korrelation sind zwei eng verwandte Filter-Operationen
- Gleich, falls der Kern von g symmetrisch unter 180° Rotation
- Beispiele:

1/9	1/9	1/9	
1/9	1/9	1/9	
1/9	1/9	1/9	

Tiefpass

Separierbarkeit linearer Filter

- Ein zweidimensionales Filter ist separierbar, falls Punktantwort durch Hintereinanderausführung zweier eindimensionaler Impulsantworten darstellbar
- Strategie: zerlege 2D Filter in einen x- und y-Kern die hintereinander angewandt werden
- Separierbarkeit in h_x und h_y:

$$g(\alpha, \beta) = \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} f(x, y) \cdot h(x, \alpha, y, \beta)$$

$$= \sum_{x=0} \sum_{y=0} f(x,y) \cdot h_x(x,\alpha) \cdot h_y(y,\beta)$$

Separierbarkeit linearer Filter

• Verarbeitung zeilenweise

$$g(\alpha,\beta) = \sum_{y=0}^{M-1} h_y(y,\beta) \sum_{x=0}^{N-1} f(x,y) \cdot h_x(x,\alpha)$$

• Verarbeitung spaltenweise

$$g(\alpha,\beta) = \sum_{x=0}^{N-1} h_x(x,\alpha) \sum_{y=0}^{M-1} f(x,y) \cdot h_y(y,\beta)$$

Reduziert Rechenaufwand von O(NM) auf O(N+M)

• Beispiel:

$$h = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, h_x = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, h_y = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Filterung am Bildrand

- Lösung1: periodische Fortsetzung des Bildes
- Lösung 2: Spiegeln am Rand
- Lösung 3: Rand konstant fortsetzen
- Lösung 4: Werte außerhalb des Bildes auf 0 setzen ("padding")
- etc...

Filterung am Bildrand

Rohs / Kratz, LMU München

Flächenbasierte Bildverbesserung

- Rauschen kann durch Integration einer Signalfolge reduziert werden
- Konstante Signalfolge
 - Integration über eine zeitliche Folge
 - Integration über eine homogene Fläche
- Lineare verschiebungsinvariante Operatoren
 Konvolutionsmethoden

Zeitliche Folge

- Annahmen
 - Aufnahme mehrerer Bilder g_i , i=1,Iüber einen gegebenen Zeitraum
 - Bild verändert sich über den Zeitraum nicht (keine Bewegung, keine Beleuchtungsänderung)
 - Erwartungswert *E* des Rauschens ("noise") *n* ist 0
- Näherung an die unverrauschte Funktion *f*
 - $E\{g(m,n)\} = E\{f(m,n)\} + E\{n(m,n)\}$ = E{ f(m,n) } +0 = f(m,n)
 - Abschätzung von *E*{*g*(*m*,*n*)} durch Integration über die Bilder

Beispiel: Integration über die Zeit

- Einzelne Aufnahme mit normalverteiltem Rauschen (SNR≈1.2)
- SNR_{max} = max. Signalamplitude / Standardabweichung des Rauschens
- Addition von 10 bzw. 50 Aufnahmen

Integration über die Fläche

- Falls f
 ür eine Reihe von Bildpunkten (p₀,...,p_n) gilt, dass f(p_i)=const, dann kann Rauschen n mit E{n}=0 durch Addition der gemessenen Funktionswerte g(p_i) reduziert werden
- Annahmen:
 - Bild besteht aus homogenen Bereichen
 - Benachbarte Punkte haben den gleichen Grauwert
- Rauschunterdrückung:
 - Mittelwertbildung über vorgegebene Nachbarschaft

Mittelwertbildung durch Konvolution

Konvolutionskern: Gleichmäßige Gewichtung der Pixel in einer gegebenen Nachbarschaft

3x3 Boxcar-Filter

7x7 Boxcar-Filter

Beobachtung: Kanten werden degradiert **Grund**: Annahme konstanter Funktionswerte ist nicht wahr

Verhalten an Kanten

- Differenz zwischen Original und Boxcar-gefiltertem Bild
 - Elimination von Strukturen

Tiefpassfilter zur Rauschunterdrückung

Transferfunktion des Binomialfilters

Weniger "Ringing Artefakte" an den Kanten

Binomialfilter

Eindimensionales Binomialfilter B^p:

$$B^{0} = 1^{-1} \cdot [1]$$

$$B^{1} = 2^{-1} \cdot [1 \ 1]$$

$$B^{2} = 4^{-1} \cdot [1 \ 2 \ 1]$$

$$B^{3} = 8^{-1} \cdot [1 \ 3 \ 3 \ 1]$$

$$B^{4} = 16^{-1} \cdot [1 \ 4 \ 6 \ 4 \ 1]$$
...

Zweidimensionales Binomialfilter $\mathbf{B}^{p} = (B^{p})^{T*}(B^{p})$: $\mathbf{B}^{2} = 4^{-1} \cdot [1 \ 2 \ 1]^{T} \cdot 4^{-1} \cdot [1 \ 2 \ 1] = 16^{-1} \cdot \begin{pmatrix} 1 \ 2 \ 1 \\ 2 \ 4 \ 2 \\ 1 \ 2 \ 1 \end{pmatrix}$

Zweidimensionale Binomialfilter

$$\mathbf{B}^{2} = 1/16 \cdot \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}^{\mathrm{T}} \cdot \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix} = 1/16 \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 1 & 2 & 1 \end{bmatrix}$$
$$\mathbf{B}^{3} = 1/64 \cdot \begin{bmatrix} 1 \ 3 \ 3 \ 1 \end{bmatrix}^{\mathrm{T}} \cdot \begin{bmatrix} 1 \ 3 \ 3 \ 1 \end{bmatrix} = 1/64 \cdot \begin{bmatrix} \frac{1}{3} & \frac{3}{3} & \frac{1}{3} \\ \frac{3}{9} & 9 & \frac{3}{3} \\ \frac{3}{1} & \frac{3}{3} & \frac{1}{1} \\ \frac{3}{1} & \frac{9}{9} & \frac{3}{3} \\ \frac{3}{1} & \frac{9}{9} & \frac{9}{3} \\ \frac{3}{1} & \frac{3}{3} & \frac{1}{1} \\ \frac{3}{1} & \frac{9}{9} & \frac{9}{3} \\ \frac{3}{1} & \frac{9}{3} & \frac{9}{3} \\ \frac{9}{1} & \frac{9}{1} \\ \frac{9}{1} \\ \frac{9}{1} & \frac{9}{1} \\ \frac{9}{1} \\$$

Binomialfilter und Gaußfunktion

• Für immer größere Filterkerne nähert sich das Binomialfilter der Gaußschen Glockenkurve an

$$G(x,y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{x^2 + y^2}{2\sigma^2}\right]$$

Filterung mit 2D Gaußfilter

Die Gaußfunktion ist separierbar, so dass die Filterung durch zwei 1D Konvolutionen erfolgen kann

Separierbarkeit der Gaußfunktion

Konvolution in lokaler Umgebung:

$$\sum_{y} \sum_{x} I_{xy} G(x, y) = \sum_{y} \sum_{x} I_{xy} a \exp\left[-bx^{2}\right] \exp\left[-by^{2}\right]$$

$$= a \sum_{y} \exp\left[-by^{2}\right] \sum_{x} I_{xy} \exp\left[-bx^{2}\right]$$
2
1

- Original: N²K² Multiplikationen
- Separiert: 2N²K Multiplikationen

k

Unscharfes Maskieren

- Originalbild unschärfer machen (Tiefpass filtern)
- Unscharfes Bild vom Original subtrahieren (ergibt die unscharfe Maske)
- Maske (nach Skalierung) zum Original addieren
- k > 1: Highboost filtering

Abbildung: © R. C. Gonzalez & R. E. Woods, Digital Image Processing

Impulsrauschen (Salt & Pepper Noise) kann durch lineare Filterung nicht entfernt werden

Nichtlineare Filterung

- Rauschen und Kanten haben im Frequenzbereich ähnliche Attribute
- Ist ein nichtlineares Filter denkbar, das für Rauschen und Kanteneigenschaften unterschiedlich sensitiv ist?
 - Rauschen sind räumlich gleichverteilte Grauwertvariationen
 - Grauwertvariationen an Kanten sind nicht räumlich gleichverteilt
 - Filter muss diesen Unterschied berücksichtigen

Rangordnungsfilter

- Vorgehen
 - Sortierung der Elemente in einer Filtermaske
 - Auswahl des an einer bestimmten Stelle einsortierten Werts
 - Eintragung des ausgewählten Werts in die zentrale Position
- Eigenschaften
 - Es entstehen keine neuen Werte
 - Filter ist nichtlinear, nicht kommutativ, nicht assoziativ

Gebräuchlichstes Rangordnungsfilter ist das Medianfilter

erster Rang mittlerer Rang (Median) letzter Rang

- Annahmen
 - 1. Grauwerte auf beiden Seiten der Kante jeweils (nahezu) konstant
 - 2. Kantensignal größer als das Rauschsignal
 - 3. Kante im Filterbereich (nahezu) gerade

 $k_D(k_H)$ = sortierte Folge der Pixelwerte der dunkleren (helleren) Seite

- Kante verläuft durch Filterbereich
 - wegen (2) : alle k_D vor k_H
 - wegen (3): mehr k_D , falls Zentrum in k_D (und umgekehrt)
 - also Median von der Seite, zu der Pixel im Zentrum gehört (kantenerhaltend), Artefakte bei Ecken
- Keine Kante im Filterbereich
 - Median n\u00e4hert sich dem Erwartungswert mit Anzahl der Stichproben (rauschunterdr\u00fcckend)

Median zur Entfernung von Pepper-Noise in einer 3x3 Umgebung

 Durch Medianfilterung (rechts) kann Impulsrauschen im Gegensatz zur Mittelwertfilterung (Mitte) beseitigt werden

a b c

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Abbildung: © R. C. Gonzalez & R. E. Woods, Digital Image Processing

Vergleich Median vs. Mittelwert

Nicht-lokale Mittelwertbildung

- Mehrere verrauschte Bilder einer statischen Szene
- Rauschen hat Mittelwert 0
- Mittelwert bilden

Buades, Coll, Morel: A Review of Image Denoising Algorithms, With a New One. Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490–530, 2005. Figures from: Shahar Kovalsky, Alon Faktor: A Tour of Image Denoising, Slides

Nicht-lokale Mittelwertbildung

• Idee: Redundanz in natürlichen Bildern ausnutzen

Figures from: Shahar Kovalsky, Alon Faktor: A Tour of Image Denoising, Slides

Buades et al.: Gewichteter Mittelwert durch Selbst-Ähnlichkeit

• Verrauschtes Bild:

 $v = \{v(i) | i \in I\}, v(i) = u(i) + n(i)$

• Nicht-lokaler Mittelwert:

$$NL[v](i) = \sum_{j \in I} w(i, j)v(j)$$

• Gewichtsfunktion $w(i,j) = \frac{1}{Z(i)} \exp\left(-\frac{\left\|v(N_i) - v(N_j)\right\|_{2,a}^2}{h^2}\right)$ $Z(i) = \sum_j \exp\left(-\frac{\left\|v(N_i) - v(N_j)\right\|_{2,a}^2}{h^2}\right)$

Figures from: Shahar Kovalsky, Alon Faktor: A Tour of Image Denoising, Slides

Buades, Coll, Morel: A Review of Image Denoising Algorithms, With a New One. Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490–530, 2005.

Rohs / Kratz, LMU München

Rohs / Kratz, LMU München

Rohs / Kratz, LMU München

Nicht-lokaler Mittelwert in der Praxis

- Nicht-lokaler Mittelwert $NL[v](i) = \sum_{i \in I} w(i, j)v(j)$
 - In der Praxis beschränkt auf Suchfenster (z.B. Größe 21x21)

• Gewichtsfunktion
$$w^*(i,j) = \exp\left(-\frac{\left\|v(N_i) - v(N_j)\right\|_{2,a}^2}{h^2}\right)$$

- Nachbarschaft N_i (z.B. Größe 7x7)
- Differenz gewichtet mit Gaußfunktion
- h abhängig von Stärke des Rauschens

Buades, Coll, Morel: A Review of Image Denoising Algorithms, With a New One. Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490–530, 2005.

Gewichtsfunktion

- Gewichtsfunktion
 - Differenz gewichtet mit Gaußfunktion
 - Vergleich aller 7x7-patches mit Referenz-patch R

$$\left\| v(N_i) - v(N_j) \right\|_{2,a}^2$$

Buades, Coll, Morel: A Review of Image Denoising Algorithms, With a New One. Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490–530, 2005.

Gewichtsfunktion

- Gewichtsfunktion
 - Differenz gewichtet mit Gaußfunktion
- Exp-Funktion:
 - Maximum bei Differenz 0: exp(0) = 1
 - sehr schneller Abfall mit zunehmender Differenz

$$w^{*}(i,j) = \exp\left(-\frac{\|v(N_{i}) - v(N_{j})\|_{2,a}^{2}}{h^{2}}\right)$$

- Normalisierung:
$$w(i,j) = \frac{w^*(i,j)}{\sum_{i} w^*(i,j)}$$

50

0

100

150

200

250

Buades, Coll, Morel: A Review of Image Denoising Algorithms, With a New One. Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490–530, 2005.

TRANSFORMATION UND INTERPOLATION

Transformation und Interpolation

• Die geometrischen Transformationen Translation, Rotation und Skalierung sind auf reellen Zahlen definiert:

$$Rot_{\alpha}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\cos\alpha & \sin\alpha\\ -\sin\alpha & \cos\alpha\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}, \quad Tr_{dx,dy}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x+dx\\y+dy\end{pmatrix}, \quad Sc_{s}\begin{pmatrix}x\\y\end{pmatrix} = s\begin{pmatrix}x\\y\end{pmatrix}$$

- Digitale Bilder haben ganzzahligen Definitionsbereich
 Definitionsbereich = diskrete Pixel
- Nach Transformation ist eine Interpolation der zugehörigen Intensitätswerte notwendig
 - nächster Nachbar
 - bilineare Interpolation
 - bikubische Interpolation

Interpolation

- Konstante Interpolation (Wert des nächsten Nachbarpixels)
- Lineare Interpolation

Konstante Interpolation

• inverse Transformation: berechne für jedes Pixel im transformierten Bild die Position im Ursprungsbild

Bilineare Interpolation

• Verwendung der 4 nächsten Nachbarn

Erster Schritt:

$$g_{1}(x_{m}, y) = \frac{y_{n+1} - y}{y_{n+1} - y_{n}} f(x_{m}, y_{n}) + \frac{y - y_{n}}{y_{n+1} - y_{n}} f(x_{m}, y_{n+1}),$$

$$g_{1}(x_{m+1}, y) = \frac{y_{n+1} - y}{y_{n+1} - y_{n}} f(x_{m+1}, y_{n}) + \frac{y - y_{n}}{y_{n+1} - y_{n}} f(x_{m+1}, y_{n+1}).$$

Zweiter Schritt:

$$g(x, y) = \frac{x_{m+1} - x}{x_{m+1} - x_m} g_1(x_m, y) + \frac{x - x_m}{x_{m+1} - x_m} g_1(x_{m+1}, y).$$

 falls die Punkte (0,0), (0,1), (1,0), (1,1) vorliegen: g(x,y) ≈ (1-x)g₁(0,y)+x g₁(1,y) = ...

Bilineare und Bikubische Interpolation

• Bilineare Interpolation: die 4 nächsten Nachbarn

 $f(x, y) \approx a + bx + cy + dxy$

– Bestimmung der Koeffizienten?

• Bikubische Interpolation: die 16 nächsten Nachbarn $f(x,y) \approx \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^{i} y^{j}$