
LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Chapter 6 - The Scene Graph

• Why a scene graph?
• What is stored in the scene graph?

– objects
– appearance
– camera
– lights

• Rendering with a scene graph
• Practical example

1

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

The 3D Rendering Pipeline (our version for this class)

2

3D models in
model coordinates

3D models in world
coordinates

2D Polygons in
camera coordinates

Pixels in image
coordinates

Scene graph Camera Rasterization

Animation,
Interaction

Lights

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Why a Scene Graph?
• Naive approach:

– for each object in the scene, set its transformation by a single matrix
(i.e., a tree 1 level deep and N nodes wide)
• advantage: very fast for rendering
• disadvantage: if several objects move, all of their transforms change

• Observation: Things in the world are made from parts
• Approach: define an object hierarchy along the part-of relation

– transform all parts only relative to the whole group
– transform group as a whole with another transform
– parts can be groups again

3
http://www.bosy-online.de/Veritherm/Explosionszeichnung.jpg

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Chapter 6 - The Scene Graph

• Why a scene graph?
• What is stored in the scene graph?

– objects
– appearance
– camera
– lights

• Rendering with a scene graph
• Practical example

4

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Geometry in the Scene Graph
• Leafs are basic 3D objects
• Non-leaf nodes (groups) contain a transformation

– can have one or several children
– transformation is given by a homogeneous Matrix

• Root is the entire world

• Nodes can be the child of
several groups
– not a tree, but a directed

acyclic graph (DAG)
– effective reuse of geometry

5

Rad1 Rad2 Rad3 Rad4

Zylinder2 schwarz

Quader1

grauChassis Kabine

Quader2 Rad

Zylinder1 weiß

Karosserie Räder

Auto

Felge Reifen

Welt

TAuto

TKarosserie

TChassis

TRäder

TKabine

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Appearance in the Scene Graph
• Scene graph also contains appearances

– Appearance: E.g. Color, reflection, transparency, texture
Details see next lecture

– can be reused similarly to geometry

• Appearance can be only partially specified
– unspecified values are inherited

6

Rad1 Rad2 Rad3 Rad4

Zylinder2 schwarz

Quader1

grauChassis Kabine

Quader2 Rad

Zylinder1 weiß

Karosserie Räder

Auto

Felge Reifen

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Lights in the Scene Graph
• Light sources also need a position and/or

direction
– Just include them into the scene graph
– Can be animated just like geometry

• Lights can be in local coordinate
systems of geometry groups
– move with them
– example: lights on a car

7

Rad1 Rad2 Rad3 Rad4

Zylinder2 schwarz

Quader1

grauChassis Kabine

Quader2 Rad

Zylinder1 weiß

Karosserie Räder

Auto

Felge Reifen

Welt

Sonne

Licht1

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

The Camera in the Scene Graph
• Camera also needs a position and direction

– Just include it into the scene graph
– Can be animated just like geometry

• Camera can be in local coordinate
systems of geometry groups
– move with them
– example: driver‘s view from a car

8

Rad1 Rad2 Rad3 Rad4

Zylinder2 schwarz

Quader1

grauChassis Kabine

Quader2 Rad

Zylinder1 weiß

Karosserie Räder

Auto

Felge Reifen

Welt

Sonne

Licht1Kamera1

Kamera

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Chapter 6 - The Scene Graph

• Why a scene graph?
• What is stored in the scene graph?

– objects
– appearance
– camera
– lights

• Rendering with a scene graph
• Practical example

9

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Scene graph traversal for rendering
• set Tact to TAuto
• push state
• set Tact to Tact x TKarosserie
• push state
• set Tact to Tact x TChassis
• render Quader1
• pop state
• set Tact to Tact x TKabine
• render Quader2
• pop state
• pop state
• set Tact to Tact x TRäder
• ...

10

Rad1 Rad2 Rad3 Rad4

Zylinder2 schwarz

Quader1

grauChassis Kabine

Quader2 Rad

Zylinder1 weiß

Karosserie Räder

Auto

Felge Reifen

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Scene Graph Libraries
• Scene graphs exist on a more abstract layer than OpenGL!
• VRML/X3D

– descriptive text format, ISO standard
• OpenInventor

– based on C++ and OpenGL
– originally Silicon Graphics, 1988
– now supported by VSG3d.com

• Java3D
– provides 3D data structures in Java
– not supported anymore

• Open Scene Graph (OSG)
• Various Game Engines

– e.g. JMonkey 3 (scene graph based game engine for Java)

11

http://www.shlomifish.org/open-source/bits-and-bobs/open-inventor-bsd-daemon/

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Chapter 6 - The Scene Graph

• Why a scene graph?
• What is stored in the scene graph?

– objects
– appearance
– camera
– lights

• Rendering with a scene graph
• Practical example

12

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Example: Hierarchically Structured Object
• Simple object composed from basic geometric forms

– Here: Cylinders, hemispheres
– Resembling e.g. a resistor in electronics

• Main form element: Cylinder
• Additional form elements:

Two ends
– Each end consisting of:

• a hemisphere
• a connector

13

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Exercise: Scene Graph for Example
• What is the scene graph for the example?
• Which are the transformations in each node?
• Which additional information should be stored in each node?

14

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Example Implementation
• Using “JMonkey Engine 3” (JME3)

– Open Source community project
– Based on Java and OpenGL
– Using scene graphs as core concept (as most gaming engines)
– See http://jmonkeyengine.org/

• Terminology of the JMonkey scene graph:
– “Spatial”: Common abstraction for all nodes in a scene graph
– “Node”: Abstract (inner) nodes in a scene graph – not rendered
– “Geometry”: Leaf node in a scene graph – visibly rendered

• Information attachable to scene graph nodes (“spatials”):
– Local affine transformation (translation, scaling, rotation)
– Material (e.g. self-illuminating colored materials, but many else)

• see next lecture

15

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Local Coordinates and World Coordinates
• Each primitive object is created in a local coordinate system

– Around the origin or at a specified location
• Object is moved/scaled/rotated to required position

relative to father node next level up
• Object is inserted into scene graph

– actually determines father node
• World coordinate position of object

– is determined by composition of all transformations along path from root to object
– as used in rendering algorithm

• Objects:
– simple geometrical objects in this section
– general polygon meshes (see last chapter) in practice

16

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Example (JMonkey Engine) Part 1
• Creating the core part of the scene

– Cylinder constructor in JME: (samples in axis, samples in radius, radius, height)
• What does this mean?
• “Mesh”: pure geometrical data, to be wrapped into scene graph objects

– Why is it likely that we need a rotation for seeing the object like we want it?
• Around which axis? What is the unit for the angle?

17

 /** create a green cylinder at origin */
 Cylinder cylMesh = new Cylinder(64,64,1.5f,3);
 Geometry cylinder = new Geometry("Cylinder", cylMesh);
 Material mat1 = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
 mat1.setColor("Color", ColorRGBA.Green);
 cylinder.setMaterial(mat1);
 cylinder.rotate(90*FastMath.DEG_TO_RAD,0f,0f);

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Example (JMonkey Engine) Part 2

• This creates a new object:
– Where is it located by default?
– What do we have to do with it to make good use of it?

18

 /** create a red dome */
 Dome domeMesh = new Dome(Vector3f.ZERO,64,64,1.5f,false);
 Geometry dome1 = new Geometry("UpperDome", domeMesh);
 Material mat2 = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
 mat2.setColor("Color", ColorRGBA.Red);
 dome1.setMaterial(mat2);

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Example (JMonkey Engine) Part 3

• What is the overall result (“Upper End”) of this?
• Why is it important to move the little cylinder before combining it with

the red dome?

19

 //++ create a little blue cylinder */
 Cylinder litCylMesh = new Cylinder(32,32,0.1f,1);
 Geometry litCylinder = new Geometry("Cylinder", litCylMesh);
 Material mat3 = new Material(assetManager,
 "Common/MatDefs/Misc/Unshaded.j3md");
 mat3.setColor("Color", ColorRGBA.Blue);
 litCylinder.setMaterial(mat3);
 litCylinder.rotate(90*FastMath.DEG_TO_RAD,0f,0f);
 litCylinder.move(0f,1.5f,0f);

 /** upper end: combine red dome and little blue cylinder by node */
 Node upperEnd = new Node("upperEnd");
 upperEnd.attachChild(dome1);
 upperEnd.attachChild(litCylinder);

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Example (JMonkey Engine) Part 3

• Why is this program code so short?
– Why is it good to use a “clone” function here?

20

 /** lower end: create a clone of upper end */
 Node lowerEnd = (Node) upperEnd.clone();

 /** put the upper end above the cylinder */
 upperEnd.move(0f,1.7f,0f);

 /** put the lower end below the cylinder */
 lowerEnd.move(0f,-1.7f,0f);
 lowerEnd.rotate(180*FastMath.DEG_TO_RAD,0f,0f);

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Example (JMonkey Engine) Part 4
• Overall presentation

– Compose main objects of the scene
– Attach scene objects to world root (“rootNode” in JME)
– Carry out global transformations for whole world

• Projection modes (e.g. orthographic vs. perspective)
– may be specified at this level

• Camera position (and other camera parameters)
– may be specified separately for projection or may be part of scene graph

21

 /** Create a pivot node at (0,0,0) and attach it to the root node */
 Node pivot = new Node("pivot");
 rootNode.attachChild(pivot); // put this node in the scene

 pivot.attachChild(cylinder);
 pivot.attachChild(upperEnd);
 pivot.attachChild(lowerEnd);
 /** Rotate the pivot node: Note that all objects have rotated! */
 pivot.rotate(0.4f,0.4f,0f);

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Scene Graphs in Practice
• Creation of scene graphs and objects

– Specific authoring software (e.g. Blender, Maya, 3DS Max)
• Assets (models, objects) exported to exchange formats

– E.g. (X3D,) Wavefront OBJ (.obj), 3ds Max (.3ds), Ogre XML (.mesh)
• Objects typically

are tesselated
– Polygon meshes
– No primitive geometric

objects visible/readable
anymore

• Example:
– JME Scene

22

LMU München – Medieninformatik – Heinrich Hussmann – Computergrafik 1 – SS2012 – Kapitel 6

Outlook: Lighting and Scene Graphs
• Types of light:

– Ambient light: No specific direction, like diffuse day light
– Directional light:

• No specific source location, but specific direction
• Like sunlight

– Various artificial light sources (spot lights, point lights):
• Occupy specific position in scene graph

• Effect of light depending on material
• See next lecture

23

