Computergrafik 2: Filtern im Frequenzraum

Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München

Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen der Bildverarbeitung. Pearson Studium, 2005)

Themen heute

- Korrelation im Frequenzraum
 - Finden von Templates
- Filtern im Frequenzraum
 - Bandreject/Bandpass-Filter
 - Notch-Filter, optimale Notch-Filter
- Dekonvolution
 - inverses Filtern
 - Wiener Filter
- Transformation und Interpolation
- Rauschunterdrückung mit Ähnlichkeitsfilter

KORRELATION IM FREQUENZRAUM

Korrelation im Ortsraum

- Ähnlichkeiten zwischen Bild und Modell feststellen
- Modell (Template) im Bild suchen

Korrelation im Ortsraum

- Ähnlichkeitsmaß (normalisierter) Korrelationskoeffizient
 - Mittelwerte subtrahiert und Varianzen normiert
- Kleineres Bild pixelweise über größeres Bild verschieben und Korrelationskoeffizient ausrechnen

(f = Bild, m = Modell/Template, (x,y) = Suchposition)

$$cc_{f,m}(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} \left(m(s,t) - \overline{m} \right) \left(f(x+s,y+t) - \overline{f}(x+s,y+t) \right)}{\sqrt{\left[\sum_{s=-a}^{a} \sum_{t=-b}^{b} \left(m(s,t) - \overline{m} \right)^{2} \right] \left[\sum_{s=-a}^{a} \sum_{t=-b}^{b} \left(f(x+s,y+t) - \overline{f}(x+s,y+t) \right)^{2} \right]}} -1 \le cc_{f,m}(x,y) \le 1$$

- Subtrahiere Mittelwerte von f und g (bzw. m)
- Ähnlichkeitsmaß: Korrelationskoeffizient cc_{f,g}

$$cc_{f,g} = \frac{\sigma_{f,g}}{\sqrt{\sigma_{f,f} \cdot \sigma_{g,g}}} = \frac{\sigma_{f,g}}{\sqrt{\sigma_f^2 \cdot \sigma_g^2}}$$

$$\sigma_{f,g} = \frac{1}{MN} \sum_{s=0}^{M-1} \sum_{t=0}^{N-1} (f(s,t) - \overline{f}(s,t)) (g(s,t) - \overline{g}(s,t))$$

$$cc_{f,g}(x,y) \approx \frac{1}{MN} \sqrt{\sigma_f^2 \cdot \sigma_g^2} \sum_{s=0}^{M-1} \sum_{t=0}^{N-1} (f(x+s,y+t) - \overline{f}(x+s,y+t)) (m(s,t) - \overline{m})$$

$$= k \sum_{s=0}^{M-1} \sum_{t=0}^{N-1} f(x+s,y+t) \cdot m(s,t) \implies FT([f \circ g](x,y)) = F(u,v) \cdot G^*(u,v)$$
Korrelationsfunktion G konjugiert

 Statt Korrelation im Ortsraum nun Multiplikation mit konjugiert komplexem Modell im Frequenzraum

 $f(x,y) \circ h(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \cdot h(x+m,y+n) \Leftrightarrow F(u,v) \cdot H^*(u,v)$

- Vorgehen
 - 1. Mittelwerte abziehen
 - 2. Padding im Ortsraum auf 2M, 2N
 - 3. Multiplikation mit (-1)^{x+y}
 - 4. DFT
 - 5. Multiplikation mit H* im Frequenzraum
 - 6. inverse DFT, Realteil
 - 7. Multiplikation mit (-1)^{x+y}
 - 8. Padding entfernen

Computergrafik 2 – SS2011

0						
Ŭ	Die Li	idwig	Maxin	lilians-	Univers	ität
100	Münc	hën od	er LML	/) ist ein	ie Uhive	ersit
	Lande	shaup	tstädt I	Nühche	h. Sie is	st ha
	Ludwi	g ix. s	owie di	in Kön	ig Maxii	nilia
200	An de	- Haw	io-May	imiliane	I Iniver	sitai
	Winte	reama	etar oh	16/11 8	bor AG	
300	ANICAL			00000		
	Baula	ci i sie Manual	Zamen	Bung		igro
	Deuts	chianc	S ISL. ¹⁰	Rund /	OU Pro	less
400	Fakuli	aten.	Mit	150 Sti	udienga	nge
	Münc	nen eir	h besor	iders br	eites Fá	iche
500	sonst	im dei	itschsp	rachige	n Raun	n hic
(0 1	.00	200	300	400	500

0						
0	Die Ludwig-Maximilians-Universität					
100	München oder LMU) ist eine Universit					
	Landeshauptstadt München. Sie ist na					
	Ludwig IX. sowie dem König Maximilia					
200	An der Ludwig-Maximilians-Universität					
	Wintersemester 2010/11 über 46.000					
300	wodurch sie zahlenmäßig die zweitgrö					
400	Deutschlands ist. ^[3] Rund 700 Profess					
	Fakultäten. ^{[2][3]} Mit 150 Studiengänge					
	München ein besonders breites Fäche					
500	sonst im deutschsprachigen Raum nic					
(0 100 200 300 400 500					

Computergrafik 2 – SS2011

0.						
	Die Ludwig-Maximilians-Universität					
100	München oder LMU) ist eine Universit					
	Landeshauptstadt München. Sie ist na					
	Ludwig IX. sowie dem König Maximilia					
200	An der Ludwig-Maximilians-Universität					
	Wintersemester 2010/11 über 46.000					
300	wodurch sie zahlenmäßig die zweitgrö					
	Deutschlands ist. ^[3] Rund 700 Profess					
400	Fakultäten. ^{[2][3]} Mit 150 Studiengänge					
	München ein besonders breites Fäche					
500	sonst im deutschsprachigen Raum nic					
000) 100 200 300 400 500					

Grenzen des Korrelations-Matching

- Abhängigkeit von
 - Skalierung
 - Rotation
 - Perspektive
- später in der Vorlesung leistungsfähigere Verfahren

Bandreject/Bandpass-Filter Notch-Filter

Bandreject-Filter

- Nützlich, wenn Sörungen in einem bestimmten Frequenzband konzentriert sind
- Selektive Bandreject-Filter können solche Störungen reduzieren

a b c

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject filters.

Bandreject/Bandpass-Filter

• Bandreject-Filter

$$- \operatorname{Ideal} \qquad H(u,v) = \begin{cases} 0 & \operatorname{falls} D_0 - \frac{W}{2} \le D \le D_0 + \frac{W}{2} \\ 1 & \operatorname{sonst} \end{cases}$$

$$- \operatorname{Butterworth} H(u,v) = \frac{1}{1 + \left(\frac{DW}{D^2 - D_0^2}\right)^{2n}} \qquad \operatorname{Gauß-Bandreject-Filter} \\ 1 + \left(\frac{D^2 - D_0^2}{D^2 - D_0^2}\right)^{2n} \qquad \operatorname{Gauß-Bandreject-Filter} \\ H(u,v) = 1 - \exp\left(-\left(\frac{D^2 - D_0^2}{DW}\right)^2\right) \qquad \operatorname{Gauß-Bandpass-Filter} \\ H_{BP}(u,v) = 1 - H_{BR}(u,v) \end{cases}$$

Beispiel: Artefakte entfernen

FIGURE 2.40

(a) Image corrupted by sinusoidal interference. (b) Magnitude of the Fourier transform showing the bursts of energy responsible for the interference. (c) Mask used to eliminate the energy bursts. (d) Result of computing the inverse of the modified Fourier transform. (Original image courtesy of NASA.)

Beispiel: Artefakte entfernen

Bandpassfilter isoliert Artefakt

Notch-Filter

- Filtert in einer bestimmten Umgebung
- Symmetrisch zum Ursprung

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

Computergrafik 2 – SS2011

Notch-Filter

- Filtert in einer bestimmten Umgebung (u₀,v₀)
- Müssen symmetrisch zum Ursprung sein
 - wenn Zentrum (u_0, v_0) , dann auch auch $(-u_0, -v_0)$
 - sonst verändert sich die Phase
- Gebildet aus Produkt von Hochpass-Filtern

$$H_{NR}(u,v) = \prod_{k=1}^{Q} H_k(u,v) \cdot H_{-k}(u,v)$$

- wobei $H_k(u,v)$ und $H_{-k}(u,v)$ ihre Zentren bei (u_k,v_k) bzw. $(-u_k,-v_k)$ haben; Distanzen relativ zu diesen Zentren

Notch-Pass-Filter

$$H_{NP}(u,v) = 1 - H_{NR}(u,v)$$

Beispiel: Reduzierung Moiré-Muster

a b c d

FIGURE 4.64

(a) Sampled newspaper image showing a moiré pattern.
(b) Spectrum.
(c) Butterworth notch reject filter multiplied by the Fourier transform.
(d) Filtered image.

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

Computergrafik 2 – SS2011

Beispiel: Reduzierung Interferenzmuster

a b c d

FIGURE 4.65 (a) 674×674 image of the Saturn rings showing nearly periodic interference. (b) Spectrum: The bursts of energy in the vertical axis near the origin correspond to the interference pattern. (c) A vertical notch reject filter. (d) Result of filtering. The thin black border in (c) was added for clarity; it is not part of the data. (Original image courtesy of Dr. Robert A. West. NASA/JPL.)

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

Computergrafik 2 – SS2011

Beispiel: Reduzierung Interferenzmuster

Notch-Pass-Filter isoliert Interferenzmuster

RESTAURATION LINEARER BILDSTÖRUNGEN

Beispiel I: Bewegungsunschärfe

- Über einen Zeitraum Δt wird ein Objektpunkt p auf immer andere Punkte auf dem CCD-Chip abgebildet.
- Bei unbewegter Kamera sei die Bildhelligkeit des abgebildeten Punkts *h*.
- Dann ist sie bei bewegter Kamera h/Δs, wobei Δs die zurückgelegte Strecke ist.
- Wenn Δs für alle Punkte gleich ist, dann lässt sich die Veränderung durch eine Faltung beschreiben.

[©] K. D. Tönnies, Grundlagen der Bildverarbeitung

Bewegungsunschärfe

• Faltungskern ist eine Funktion w mit

$$w(t \cdot \cos \alpha, t \cdot \sin \alpha) = \begin{cases} \frac{1}{\Delta s} & |t| < \frac{\Delta s}{2} \\ 0 & sonst \end{cases}$$

- Der Winkel α gibt die Bewegungsrichtung an.
- Die Strecke PΔs gibt die Strecke an, um die sich der Punkt bewegt hat:

$$\Delta s = \frac{f}{Z} \cdot \frac{\Delta S}{p}$$

- *f*: Brennweite
- Z: Objektabstand
- $-\Delta S$: Bewegung in der X-Y-Ebene
- P: Pixelgröße

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Rohs / Kratz, LMU München

Objekt

Bewegungsunschärfe

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Computergrafik 2 – SS2011

Repräsentation linearer Störungen

- Jede verschiebungsinvariante lineare Operation wird vollständig durch die Faltungsfunktion beschrieben.
- Die Faltungsfunktion beschreibt die Operation f
 ür beliebige Bilder
- Die Faltungsfunktion kann als Resultat der Veränderung eines Punkts erzeugt werden
- Punktantwort = Point Spread Function (PSF)

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Beispiel II: Fokussierungsunschärfe

 Maß der Unschärfe hängt vom Punktabstand z, der Brennweite der Linse f und der Kammerkonstante f_k ab.

• Linsengesetz:

$$\frac{1}{z} = \frac{1}{f} + \frac{1}{f_k} \Leftrightarrow f_k = \frac{zf}{f - z}$$

Größe des Unschärfekreises:

 Unschärfe kann durch Aufnahme eines punktförmigen Testobjekts angenähert werden.

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Fokussierungsunschärfe

Wie kann die Störung rückgängig gemacht werden?

Bildrestauration

- Ziel: Korrektur des Bildsignals um bekannte und unbekannte Störungen
- Annahme: Störung kann durch einen verschiebungsinvarianten linearen Operator h beschrieben werden
- $g(x,y) \rightarrow (Störung durch PSF h) \rightarrow g'(x,y)$
- $g'(x,y) = [h^*g](x,y)$
- PSF beschreibt die Störung → Wie kann die PSF bestimmt werden?

Gesucht: PSF

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Computergrafik 2 – SS2011

PSF von Testbildern

- Annahme: Störung konstant und Testaufnahme möglich
- Durch die Aufnahme eines punktförmigen Objekts kann ein δ-Impuls approximiert werden
- Aufnahme ist eine Näherung für die PSF

PSF aus dem aufgenommenen Bild

 Falls Testaufnahme nicht möglich: Näherungsweise Bestimmung der PSF durch Betrachtung von Punkten oder Linien im gestörten Bild

Kanten

• Die meisten Bilder weisen wenige Linien oder Punkte auf, aber Kanten können in fast jedem Bild gefunden werden.

1D-Kanten

- Die Stärke einer Kante hängt von der Steigung der Funktion ab: Betrag der ersten Ableitung bestimmen
- Für diskrete Funktionen: Ableitung wird durch Differenz angenähert

Kanten im 2D-Raum: Gradienten

Richtung: Richtung der größten Steigung.

Länge: Stärke der stärksten Steigung.

- Gradient im kontinuierlichen Raum (x,y): Vektor der partiellen Ableitungen der Bildfunktion in x- und y-Richtung: (f(x,y)) = (∂f/∂x ∂f/∂y)
- Approximation des Gradienten: Differential wird durch Differenz approximiert:
 G̃(*f*)(*m*,*n*) ≈ [*G_x*(*m*,*n*) *G_v*(*m*,*n*)] = [*f*(*m*,*n*)-*f*(*m*-1,*n*) *f*(*m*,*n*)-*f*(*m*,*n*-1)]
- Die Länge des Gradienten ist sein Betrag |G(f)| oder näherungsweise |Gx|+|Gy|.

Elemente des Gradienten

Betrag: $sqrt(G_x^2 + G_y^2)$ Richtung: $tan^{-1}(G_y / G_x)$

PSF aus Kanten

• PSF kann aus dem Verlauf einer als ideal angenommenen Kante approximiert werden

Invertierung der Störung

- Überführung der Repräsentation in den Frequenzraum: $G'(u,v) = FT[g'(m,n)] = FT[[h*g](m,n)] = H(u,v) \cdot G(u,v)$
- Invertierung:

 $g(m,n) = FT^{-1}[G'(u,v)/H(u,v)]$ \leftarrow Inverse Filterung

Inverse Filterung

 Vollständige Rückgewinnung der Information aus den gestörten Daten

Bewegungsunschärfe

FT(PSF)

Bewegungsunschärfe

 Resultat der inversen Filterung FT⁻¹[FT(g['])(u,v)/FT(PSF)(u,v)]

Numerische Probleme bei der inversen Filterung

$$g = h^* f \Longrightarrow f(m,n) = FT^{-1}\left(\frac{G(u,v)}{H(u,v)}\right)$$

- Problem: Nullstellen von H
 - Treten auf, falls h als Matrix nicht den vollen Rang hat
 - Auch kleine Werte von H sind numerisch schon ein Problem
- Deswegen in der Praxis:

$$F(u,v) = \begin{cases} \frac{G(u,v)}{H(u,v)} & H(u,v) > H_{\min} \\ 0 & sonst \end{cases}$$

Rauschen

- Problem: Inverse Filterung geht von idealen (ungestörten) Daten aus
- aber: Bilddaten enthalten Rauschen
- inverse Filterung verstärkt Rauschen extrem
 - mit steigender Frequenz: (weißes) Rauschen bleibt, Signal-Amplitude nimmt schnell ab, Rauschanteil wird höher

$$g(m,n) = f(m,n) * h(m,n) + \eta(m,n)$$

$$G(u,v) = F(u,v) \cdot H(u,v) + N(u,v) \Leftrightarrow \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

- ad-hoc Lösung: hohe Frequenzen ausschließen

Rauschen

$$G(u,v) = F(u,v) \cdot H(u,v) + N(u,v) \Leftrightarrow \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

Computergrafik 2 – SS2011

Rauschen

• Invertierung bei Rauschen oft nicht möglich

Abschneiden hoher Frequenzen

a b c d

FIGURE 5.27

Restoring Fig. 5.25(b) with Eq. (5.7-1). (a) Result of using the full filter. (b) Result with *H* cut off outside a radius of 40; (c) outside a radius of 70; and (d) outside a radius of 85.

cut-off-Radius:85

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

Rohs / Kratz, LMU München

Computergrafik 2 – SS2011

Gewichtete inverse Filterung

 Gewichtung der inversen Filterung mit der Amplitude der Störungsfunktion im Verhältnis zur mittleren Amplitude des Signals

$$\frac{1}{H(u,v)} \frac{|H(u,v)|}{A_N}$$
 Amplitude der PSF
A_N mittlere Amplitude der Rauschens

Gewichtungsfaktor

- Problem: Gewichtung nimmt keine Rücksicht auf die Signalstärke von F
 - Falls Amplitude von F hoch, kann Abschwächung kleiner, d.h. Gewicht größer sein

Wiener Filter

• Minimierung des Fehlers zwischen Originalbild f und Schätzer \hat{f} führt zu

$$\hat{F}(u,v) = X(u,v) \cdot G(u,v)$$

$$X(u,v) = \frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + \frac{S_\eta(u,v)}{S_f(u,v)}} = \frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + \frac{|N(u,v)|^2}{|F(u,v)|^2}}$$

- S_η und S_f sind die Spektren (Quadrate der Amplituden) des Rauschens bzw. der ungestörten Funktion
 - S_η = 0 (ungestört) → perfekte inverse Filterung
- Wiener Filter dämpft Frequenzen abhängig von SNR

"heuristisches Wiener Filter"

- Leider ist S_{η} in der Praxis meist unbekannt
- Lösung: Konstante K: "heuristisches Wiener Filter"

$$\hat{F}_{K}(u,v) = X_{K}(u,v) \cdot G(u,v)$$
$$X_{K}(u,v) = \frac{1}{H(u,v)} \frac{\left|H(u,v)\right|^{2}}{\left|H(u,v)\right|^{2} + K}$$

Beispiel

gestörtes Bild

durch Inverse Filterung "restauriert"

(Heuristisches) Wiener Filter

TRANSFORMATION UND INTERPOLATION

Transformation und Interpolation

 Die Transformationen Translation, Rotation und Skalierung sind auf reellen Zahlen definiert

$$Rot_{\alpha}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\cos\alpha & \sin\alpha\\-\sin\alpha & \cos\alpha\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}, \quad Tr_{dx,dy}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x+dx\\y+dy\end{pmatrix}, \quad Sc_s\begin{pmatrix}x\\y\end{pmatrix} = s\begin{pmatrix}x\\y\end{pmatrix}$$

- Digitale Bilder haben einen ganzzahligen Definitionsbereich
- Nach Transformation ist eine Interpolation notwendig

Interpolation

- Konstante Interpolation (Wert des nächsten Nachbarpixels)
- Lineare Interpolation
- Interpolation im Frequenzraum

Konstante Interpolation

Bilineare Interpolation

Polynome höheren Grades

- Interpolation der Bildfunktion durch mehr als 2 Stützpunkte
 - Polynom n-ten Grades interpoliert n+1 Punkte
- Die Bildfunktion wird besser angenähert, wenn mehr Terme der Taylor-Approximation berücksichtigt werden.
 - Ableitungen für Taylor-Reihe durch Differenzen angenähert
- Grad des Polynoms ist ein Kompromiss zwischen
 - steigender Anzahl berücksichtigter Terme der Taylor-Reihe
 - steigender Ungenauigkeit der geschätzten Ableitungen

RAUSCHUNTERDRÜCKUNG MIT ÄHNLICHKEITSFILTER

Nicht-lokale Mittelwertbildung

- Mehrere verrauschte Bilder einer statischen Szene
- Rauschen hat Mittelwert 0
- Mittelwert bilden

Figures from: Shahar Kovalsky, Alon Faktor: A Tour of Image Denoising, Slides

Computergrafik 2 – SS2011

Nicht-lokale Mittelwertbildung

Redundanz in natürlichen Bildern ausnutzen

Computergrafik 2 – SS2011

Buades, Coll, Morel: Gewichteter Mittelwert durch Selbst-Ähnlichkeit

• Verrauschtes Bild:

 $v = \{v(i) | i \in I\}, v(i) = u(i) + n(i)$

• Nicht-lokaler Mittelwert:

$$NL[v](i) = \sum_{j \in I} w(i, j)v(j)$$

• Gewichtsfunktion $w(i,j) = \frac{1}{Z(i)} \exp\left(-\frac{\left\|v(N_i) - v(N_j)\right\|_{2,a}^2}{h^2}\right)$ $Z(i) = \sum_j \exp\left(-\frac{\left\|v(N_i) - v(N_j)\right\|_{2,a}^2}{h^2}\right)$

Figures from: Shahar Kovalsky, Alon Faktor: A Tour of Image Denoising, Slides