Computergrafik 2: Filtern im Frequenzraum

Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München

Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen der Bildverarbeitung. Pearson Studium, 2005)

Themen heute

- Eigenschaften der Fourier-Transformation
- Filtern im Frequenzraum

EIGENSCHAFTEN DER FOURIER-TRANSFORMATION

Fourier-Transformation einer Box-Funktion

Rohs / Kratz, LMU München

Fourier-Transformation einer Gauß-Funktion

Rohs / Kratz, LMU München

Fourier-Transformation eines Impulses im Ortsraum

Impuls im Ursprung wird zu Konstante im Frequenzraum

 Impuls an der Stelle t₀ wird liegt auf Einheitskreis im Frequenzraum

$$F(u) = \int_{-\infty}^{\infty} \delta(t - t_0) \cdot e^{-i2\pi u t} dt = e^{-i2\pi u t_0}$$

Eigenschaften der 2D-DFT: Translation

2D-
DFT:
$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \cdot e^{-i2\pi(ux/M+vy/N)}$$

 $f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \cdot e^{i2\pi(ux/M+vy/N)}$

Phase

 Verschiebung im Ortsraum f
ührt zu Phasenverschiebung im Frequenzraum:

$$f(x-x_0, y-y_0) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \cdot e^{i2\pi(u(x-x_0)/M+v(y-y_0)/N)}$$

$$= \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \cdot e^{i2\pi(ux/M+vy/N)} \cdot e^{-i2\pi(ux_0/M+vy_0/N)}$$

$$= \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \left[F(u,v) \cdot e^{-i2\pi(ux_0/M + vy_0/N)} \right] \cdot e^{i2\pi(ux/M + vy/N)}$$

Rohs / Kratz, LMU München

Eigenschaften der 2D-DFT: Periodizität

• 2D-DFT
$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \cdot e^{-i2\pi(ux/M+vy/N)}$$

 $f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \cdot e^{i2\pi(ux/M+vy/N)}$

• Verschiebung im Ortsraum um Vielfache von M, N:

$$f(x-aM, y-bN) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \left[F(u,v) \cdot e^{-i2\pi(u(aM)/M+v(bN)/N)} \right] \cdot e^{i2\pi(ux/M+vy/N)}$$
$$= \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \left[F(u,v) \cdot e^{-i2\pi(ua+vb)} \right] \cdot e^{i2\pi(ux/M+vy/N)}, \quad u,v \in N_0, a,b \in \mathbb{Z}$$

$$= \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) \cdot e^{i2\pi(ux/M+vy/N)} = f(x,y)$$

Zentrierung der 2D-DFT

- Verschiebung im Frequenzraum um M/2, N/2
- Visualisierung der verschobenen
 Funktion vorteilhaft

$$f(x,y)(-1)^{x+y}$$
$$\Leftrightarrow F\left(u-\frac{M}{2},v-\frac{N}{2}\right)$$

Abbildung: © R. C. Gonzalez & R. E. Woods, Digital Image Processing

Zentrierung der 2D-DFT

• Verschiebung um M/2, N/2 im Frequenzraum:

$$F\left(u-\frac{M}{2},v-\frac{N}{2}\right) \Leftrightarrow f(x,y)(-1)^{x+y}$$

$$F\left(u - \frac{M}{2}, v - \frac{N}{2}\right) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \cdot e^{-i2\pi \left(\left(u - \frac{M}{2}\right)x/M + \left(v - \frac{N}{2}\right)y/N\right)}$$

$$=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)\cdot e^{i\pi(x+y)}\cdot e^{-i2\pi(ux/M+vy/N)}$$

$$M-1N-1$$

$$= \sum_{x=0}^{\infty} \sum_{y=0}^{\infty} \left[f(x,y) \cdot (-1)^{x+y} \right] \cdot e^{-i2\pi (ux/M + vy/N)}$$

1 6 4 17 4

Eigenschaften der 2D-FT: Rotation

- Rotation im Ortsraum führt zu Rotation im Frequenzraum
- Schreibe FT in Matrix-Vektor-Notation:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) \cdot e^{i2\pi(xu+yv)} du dv$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F\left(\begin{pmatrix} u \\ v \end{pmatrix}\right) \cdot e^{i2\pi\left(\begin{pmatrix} x \\ y \end{pmatrix}^{T}\left(\begin{matrix} u \\ v \end{pmatrix}\right)} du dv, \quad mit \begin{pmatrix} x \\ y \end{pmatrix}^{T}\left(\begin{matrix} u \\ v \end{pmatrix}\right) = xu+yv$$

• Rotation mit 2x2-Rotationsmatrix R:

$$f\left(R\left(\begin{array}{c}x\\y\end{array}\right)\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F\left(\left(\begin{array}{c}u\\v\end{array}\right)\right) \cdot e^{i2\pi\left(\left(R\left(\begin{array}{c}x\\y\end{array}\right)\right)^{T}\left(\begin{array}{c}u\\v\end{array}\right)\right)} du dv = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F\left(R\left(\begin{array}{c}u\\v\end{array}\right)\right) \cdot e^{i2\pi(xu+yv)} du dv$$

nächste Folie

Eigenschaften der 2D-FT: Rotation

$$f\left(R\begin{pmatrix}x\\y\end{pmatrix}\right) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F\left(\begin{pmatrix}u\\v\end{pmatrix}\right) \cdot e^{i2\pi\left(\left[\binom{x}{y}\right]^{T}\left[\binom{u}{v}\right]\right)} du dv \quad \text{Rotationsmatrix R}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F\left(R\begin{pmatrix}u'\\v'\end{pmatrix}\right) \cdot e^{i2\pi\left(\binom{x}{y}\right]^{T}R\begin{pmatrix}u'\\v'\end{pmatrix}} du dv, \quad mit\begin{pmatrix}u'\\v'\end{pmatrix} = R^{-1}\begin{pmatrix}u\\v\end{pmatrix}, \quad R^{-1} = R^{T}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F\left(R\begin{pmatrix}u'\\v'\end{pmatrix}\right) \cdot e^{i2\pi\left(\binom{x}{y}\int^{T}R^{T}R\begin{pmatrix}u'\\v'\end{pmatrix}\right)} du dv$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F\left(R\begin{pmatrix}u'\\v\end{pmatrix}\right) \cdot e^{i2\pi\left(\binom{x}{y}\int^{T}\left[\binom{u'}{v'}\right]} du dv$$
Integration über alle (u,v)^T, d.h. über
die gesamte Ebene, und damit auch
über alle R^{-1}(u,v)^{T}. Substituierung
R^{-1}(u,v)^{T} \to (u,v)^{T}

Konvolution im Frequenzraum

• 1D-Konvolution

$$f(x) * h(x) = \sum_{n=0}^{N-1} f(n) \cdot h(x-n)$$
$$\Leftrightarrow F(u) \cdot H(u)$$

2D-Konvolution

$$f(x,y) * h(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \cdot h(x-m,y-n)$$
$$\Leftrightarrow F(u,v) \cdot H(u,v)$$

• Periodizität problematisch \rightarrow Padding

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

FILTERN IM FREQUENZRAUM

Frequenzraumfilterung

 Statt Konvolution im Ortsraum nun Multiplikation im Frequenzraum

$$f(x, y) * h(x, y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) \cdot h(x - m, y - n)$$
$$\Leftrightarrow F(u, v) \cdot H(u, v)$$

- Vorgehen
 - 1. Padding im Ortsraum auf 2M, 2N
 - 2. Multiplikation mit (-1)^{x+y}
 - 3. DFT
 - 4. Multiplikation mit Filter im Frequenzraum
 - 5. inverse DFT, Realteil
 - 6. Multiplikation mit (-1)^{x+y}
 - 7. Padding entfernen

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

Ideales Tiefpassfilter

- Tiefpassfilter l\u00e4sst tiefe Frequenzen passieren und
- dämpft hohe Frequenzen Ideales Tiefpassfilter $H_{F_{\text{max}}}(u,v) = \begin{cases} 1 & \text{, falls } u^2 + v^2 \le F_{\text{max}}^2 \\ 0 & \text{, sonst.} \end{cases}$
- *F_{max}*: Cut-Off-Frequenz

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Ideales Tiefpassfilter (ohne Padding)

Ideales Tiefpassfilter (mit Padding)

Rohs / Kratz, LMU München

Ideales Tiefpassfilter zur Rauschunterdrückung

Cut-Off-Frequenz: 40

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Ringing-Artefakt

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Ringing-Artefakt

Fourier-transformierte Zeile

Das Ringing-Artefakt entsteht, weil scharfe Kanten durch Wellen **aller** Frequenzen beschrieben werden und der ideale LPF hohe Frequenzen abschneidet

je kleiner die Cut-Off-Frequenz F_{max}, desto stärker der Ringing-Artefakt

Butterworth-Filter

 Frequenzen werden nicht gelöscht, sondern nur abgeschwächt

• Tiefpass-Filter (BLPF):

$$H(u,v) = \frac{1}{1 + (D(u,v)/D_0)^{2n}}$$

• Hochpass-Filter (BHPF):

$$H(u,v) = \frac{1}{1 + (D_0 / D(u,v))^{2n}}$$

$$D_0: \quad \text{Cutoff-Frequenz}$$

$$D(u,v): \text{ Frequenz, Abst. Ursprung}$$

n: \quad \text{Ordnung des Filters}

Einfacher Tiefpass vs. Butterworth

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Beispiel: BLPF, n = 2, $D_0 = 80$

Rohs / Kratz, LMU München

Beispiel: BLPF, n = 2, $D_0 = 40$

Rohs / Kratz, LMU München

Beispiel: BLPF, n = 2, $D_0 = 20$

Rohs / Kratz, LMU München

Ordnung n des Butterworth-Filters

Ordnung n bestimmt die Steilheit der Transferfunktion

• je größer Ordnung n, desto stärkere Ringing-Artefakte

M=N=1000 D₀=5

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

Gauß-Filter

- Keine Artefakte, da Fourier-Transformation einer Gauß-Funktion wieder eine Gauß-Funktion
- Tiefpass-Filter (GLPF):

$$H(u,v) = \exp\left(-\frac{D^2(u,v)}{2D_0^2}\right)$$

• Hochpass-Filter (GHPF):

$$H(u,v) = 1 - \exp\left(-\frac{D^2(u,v)}{2D_0^2}\right)$$

 D_0 : entspricht σ D(u,v): Frequenz, Abstand vom Ursprung

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Beispiel: GLPF, $D_0 = 80$

Rohs / Kratz, LMU München

Beispiel: GLPF, $D_0 = 40$

Rohs / Kratz, LMU München

Beispiel: GLPF, $D_0 = 20$

Rohs / Kratz, LMU München

Transferfunktion des GLPF

- GLPF begrenzt weniger scharf, als das BLPF
- GLPF erzeugt keine Ringing-Artefakte

a b c

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter radial cross sections for various values of D_0 .

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

Filterresultate des Gauß-Filters

© K. D. Tönnies, Grundlagen der Bildverarbeitung

Beispiel: GHPF, D_0 = 80

Rohs / Kratz, LMU München

Beispiel: GHPF, D_0 = 40

Rohs / Kratz, LMU München

Beispiel: GHPF, $D_0 = 20$

Rohs / Kratz, LMU München

Vermeiden der Auslöschung niedriger Frequenzen beim GHPF

• Hochpass-Filter (GHPF):

$$H(u,v) = 1 - \exp\left(-\frac{D^2(u,v)}{2D_0^2}\right)$$

$$0 \le H(u,v) \le 1$$

• modifiziertes GHPF:

$$H_a(u,v) = a + (1-a) \cdot H(u,v)$$

$$a \le H_a(u,v) \le 1$$

 D_0 : entspricht σ D(u,v): Frequenz, Abstand vom Ursprung

© R. C. Gonzalez & R. E. Woods, Digital Image Processing

Beispiel: GHPF, $D_0 = 20$, $H_a(u,v)$, a = 0.2

Rohs / Kratz, LMU München

Beispiel: GHPF, $D_0 = 40$, $H_a(u,v)$, a = 0.2

Rohs / Kratz, LMU München

Beispiel: GHPF, $D_0 = 80$, $H_a(u,v)$, a = 0.2

Rohs / Kratz, LMU München