

Mobile Feedback for NFC/RFID-based Applications

Student: Henri Palleis Supervisors: Gregor Broll, Alexander Wiethoff Responsible lecturer: Prof. Dr. Hußmann

Motivation: Increasing number of NFC-based applications, complex interfaces with a lot of tags

Goal: Comparison of different feedback methods for NFC-based applications

Agenda

- 1. Related Work
- 2. First User Study
- 3. Second User Study
- 4. Conclusion & Outlook

NFC-based applications

- Perci (PERvasive ServiCe Interaction) project, NTT DoCoMo Euro-Labs [10]
- Improving the Accessibility of NFC/RFID-based Mobile Interaction through Learnability and Guidance [11]
- Touch & Interact project [12]
- back
 - Tactons, Earcons [13]
 - Tactile Feedback for Mobile Interactions [14]

How do users perform simple tasks with different feedback technologies?

- Abstract use cases (as abstract as possible)
- Two prototypes with different feedback situations
 - Simple and strong confirmation
 - Simple and critical error
- Haptic, auditory and visual feedback
- Measurement of time and attention shifts
- 14 participants, latin square design

First Prototype: Task 1: Touch all uneven numbers Measured: Time and attention shifts

Feedback: Simple confirmation Haptic: Short vibration Audio: Simple tone Visual: Text-alert with number

First Prototype:

Task 2: Touch all even numbers (three damaged tags simulated) and identify the three damaged tags Measured: Time and attention shifts

Feedback: Simple confirmation and critical error Haptic: Short Vibration/Long Vibration Audio: Simple tone/broken tritone Visual: Text-alerts

NFC-Memory

Spielfeld:

Second Prototype:

Task: Find the four pairs Measured: Time and Attention shifts

Feedback: Simple and strong confirmation, simple and critical error

Haptic:

- Short vibration/Two short vibrations
- Long vibration/Two long vibrations

Audio:

- Simple tone/Broken major triad
- Broken tritone/"Alarming"
 sound

Visual:

• Text-alerts and picture-alerts

- Performance of users with visual feedback worse than with haptic or auditory feedback
- For more complicated tasks involving different feedback situations the audio feedback leads to best performance
- The users like the haptic feedback but have difficulties to recognize and learn patters
- The users are concerned about privacy with audio feedback

Second User Study

Original idea: Diabetes type 2 use case

Second User Study

- 12 participants
- 8 tagged products (white boxes)
- Every product has an assigned sugar content
- The user scans the products an orders them according to the sugar content
- Identification of the two products he is allergic to and two products with the same sugar content

The Feedback:

Haptic/Visual: A short vibration to confirm the touch of the tag, a diagram with a green-red scale to show the sugar content and text alerts to warn about allergies.

Audio/Haptic: A short sound to confirm the touch of the tag, 1-5 short vibrations to express the sugar content and a long vibration to warn about allergies.

- Users prefer the visual feedback although it produces more attention shifts
- The haptic feedback is considered useful, but needs too much attention

Conclusions

- People like haptic feedback and see the benefits
- Current vibration capabilities of mobile devices not sufficient to deliver complex feedback
- Auditory feedback is easy to learn and leads to good performances in a lot of situations, but users are concerned with privacy issues

Future Work

- Build a "library" of feedback patterns
- Build advanced prototypes with capable vibration motors

Thank you for your attention! h.palleis@gmail.com

References

- [1], [2], [3], [5], [10]: http://www.hcilab.org/projects/perci/index.htm
- [4]: Hardy, Rukzio, Wagner, Paolucci: Exploring Expressive NFC-based Mobile Phone Interaction with Large Dynamic Displays.
- [6]: Hardy, Rukzio: Touch & Interact: Touch-based Interaction of Mobile Phones with Displays.
- [7], [8], [14]: Brewster: Tactile Feedback for Mobile Interactions.
- [9], [11]: Broll, Keck, Holleis, Butz: Improving the Accessibility of NFC/RFID-based Mobile Interaction through Learnability and Guidance.
- [12]: http://www.comp.lancs.ac.uk/~rukzio/projects.shtml
- [13]: http://www.dcs.gla.ac.uk/~stephen/publications.shtml
- [14]: http://www.iconfinder.net

Implementation Backup

Based on Nokia 6131 NFC SDK

First User Study: Backup

Results: Qualitative Results

Sven Siorpaes, Gregor Broll, 26.07.2006