
Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 1

10 Modelling Multimedia Applications

10.1 Model-Driven Development

10.2 Multimedia Modeling Language MML

Literature:

M. Jeckle, C. Rupp, J. Hahn, B. Zengler, S. Queins: UML Glasklar,

Hanser Wissenschaft Muenchen, 2003

David Frankel: Model Driven Architecture, OMG Press, 2003

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 2

Models

• How to denote the concepts found during analysis and design phase of
the software development process?

a) Non-formal: e.g. in natural language.

– Pro: easy to read and write

– Contra: large descriptions, often inconsistent and ambiguous

b) Formal: e.g. with mathematical formulas

– Pro: formal proof of correctness and consistency possible

– Contra: requires expert knowledge

c) Semi-formal: e.g. graphical models

– Compromise between both

• Model: !a simplified image of a system"

• Different views on a system, e.g. structure vs. behavior

• Different levels of abstraction, e.g. use case vs. program flow

• Notation: for software development often graphical models (e.g. UML).
Advantage: compact, (relatively) easy to understand

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 3

Model-Driven Development

• Development process with models as core assets

• Idea:

– !Programming" on abstract conceptual level

– Implementation code is generated automatically from models

– Expert knowledge about implementation details is put into the code
generator

• Requirements:

– Various models available to cover development process:

» Different levels of abstraction during development

» Different views on the system to cover all aspects of the system

– Transformations (mappings) between the models

» Forward, to derive more concrete models from earlier models

» Backwards, to allow iterations

• Transformations specified explicitly and treated as assets of their own

– Customizable

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 4

Model-Driven Architecture

• Model-Driven Architecture (MDA): A concrete framework defined by the
Object Management Group (OMG) for model-driven development

– CIM: Computation independent model

– PIM: Platform independent model

– PSM: Platform specific model

PSM 1
Code

(Platform 1)

Transfor-
mation 1.2

CIM PIM

Transfor-
mation 0

PSM n
Code

(Platform n)
Transfor-

mation n.2

…

Transfor-
mation 1.1

Transfor-
mation n.1

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 5

10 Modelling Multimedia Applications

10.1 Model-Driven Development

10.2 Multimedia Modeling Language MML

Literature:

A. Pleuß: MML - A Language for Modeling Interactive Multimedia
Applications.
Seventh IEEE International Symposium on Multimedia (ISM 2005),
pp. 465 - 473, IEEE Society Press, 2005

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 6

A Modeling Language for Multimedia Applications

• Multimedia Modeling Language (MML) is a research approach
(from LMU)

• MML is an independent modeling language which reuses concepts from
UML (Unified Modeling Language)

• Problem: Tool support

– Solution: Provided as a Profile („plug-in“) for UML

» MML available as Profile for the UML tool MagicDraw

• Most important element in a UML Profile: Stereotype

– Extends or adapts an existing UML model element for a specific purpose

– Example: UML Profile for Java contains a Stereotype <<JavaClass>>

– Stereotypes denoted in guillemets «»
<<JavaClass>>

Account

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 7

Example Application: Break Out Game

• (Small) games are good examples for interactive multimedia applications

– Make intensive use of media objects, interaction and complex user interfaces

– Functionality can be understood easily without specific domain knowledge

Paddle

Ball

Bricks Wall

Off Field

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 8

Abstract User Interface
Diagram

Diagrams in MML

Structure Diagram

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 9

Abstract User Interface
Diagram

Diagrams in MML

Structure Diagram

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 10

Application Structure Diagram

Motivation:

• Structure of application logic in terms of a domain model analogous to
conventional applications

• In addition: media components as core assets of the application as

– Usage of specific media types is often a core requirement for the application

– Provision of media objects can be a appreciable part of the development process

• Integration of media components and application logic

– Can require a specific inner structure of a media component

Notation:

• UML class diagram, extended with elements for media components

Parts:

• Application Entities for application logic

• Media components

• Scene classes (see Scene Model)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 11

Example: Application structure
for Break Out Game Application

BlockOut

+countBricks () : int

-number : int

Level

+hit ()

Brick

+startMoving ()

+move ()

+init ()

+rebound()

Ball

+reboundBall ()

-leftRight

Paddle

1

*

1 *
+getLives () : int

+decreaseLifes ()

+increaseScore ()

-lives : int

-score : int

Player

1

1

1

11

1

«Animation»

BallAnimation

«Animation»

BrickAnimation

«Animation»

PaddleAnimation

«Sound»

BrickSound

<<Graphics>>

LevelGraphic

<<Graphics >>

Wall

<< Graphics>>

OffField

3

Media

ComponentMedia

Representation

Inner

Structure

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 12

Application Structure: Application Entities

• Analogous to UML class diagram

• Classes for application logic marked as application entities to distinguish
them from other kinds of classes

• Classes with attributes and operations

– Attributes have a type and a default value

– Operations may have parameters and a return value

• Associations between classes

– Have a role name at each end

– Have a multiplicity at each end, e.g. ‚1!, ‚0..2! or ‚*! (default: 1)

– Arrows show which ends are navigable (no arrows: bidirectional)

– Aggregation or composition

• Generalizations between classes

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 13

Application Structure: Media Components

• Media component types: (2D-)animation (i.e. MovieClip in Flash), 3D-
animation, audio, video, text, image, graphics

• Media component includes (automatically) the standard functionality to
present (and eventually manipulate) the media object

– Image is decoded and displayed, video can be played, paused, stopped etc.

• Each media component represents an application entity

– Specified in the model by Media-Representation relationship between
application entity (class or part thereof) and media component

• Inner structure of media components can be specified if necessary

– Only necessary if application logic must access inner parts

– Inner components are connected with their parent by Media-Composition
relationship

• Media Components can provide operations, e.g. play() for a video or
run() and jump() for an animated character

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 14

Abstract User Interface
Diagram

Diagrams in MML

Structure Diagram

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 15

Scene Diagram

Motivation:

• Overall behavior and navigation

• Captures ideas e.g. from storyboards or derived from task models

• Shows the different “screens” of the application and the navigation
between them

– (however as MML is platform independent: a scene must not be necessarily
be realized by a visual “screen”, for instance think of speech dialogue
applications)

Parts:

• Scenes an Transitions between them

Notation:

• Adapted UML state charts

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 16

Example: Scenes
 for Break Out Game Application

Menu

Game

Score

HighscoreHelp

startGame(p:Player,

hasSound:Boolean)

levelFinished (p:Player)

gameOver(p:Player)

[p.lives > 0]

<<history> nextLevel()

<<history>> resumeMenu

<<history>>

resumeMenu
<<history>>

resumeMenumenuHelp

initialMenu

Scene

Transition

EntryOperation of

Scene !Game!

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 17

Scenes in the Scene Diagram

• Scene: represents a specific state of the user interface (e.g. a ‚screen!)

– Can have an internal state, i.e. class properties

• Entry-Operations, Exit-Operations: specific kind of operations of a scene
which are executed when scene is entered/exited

• Transitions between scenes correspond to execution of exit-operation in
the source scene and entry-operation in the target scene.

– Name of addressed entry-operation is denoted next to the transition

• History: Entry into a scene might sometimes require to resume the last
state of the scene.

– Example: the user views a video, leaves scene to view the help, and wants
to continue the video afterwards.

– Keyword history specifies that an entry-operation of a scene resumes the
scene!s previous state.

• Scenes can have attributes and operations => additionally modeled as
classes in the class diagram tagged with the keyword scene.

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 18

Abstract User Interface
Diagram

Diagrams in MML

Structure Diagram

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 19

Abstract User Interface Diagram

Motivation:

• Platform independent specification of a scene"s user interface

• Specifies the elements required to allow the user to fulfill all his task

• Derived e.g. from task analysis, storyboards, mock-ups, etc.

• User interface components represent application entities from the application structure
diagram

• In a multimedia application, user interface components are partially realized by media
components

Notation:

• Similar to various user interface modeling languages (no corresponding UML diagram type)

• Can be combined with additional diagrams (e.g. concrete presentation diagram) or
sketches to document a corresponding specific idea of the concrete layout

Parts:

• For each scene:

– User interface components and UI-Representations

– Media Components and UI-Realizations

– Sensors

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 20

Game

Ball
{Ball}

Bricks [0..n]
{Brick}

Score
{Player .score}

LevelNo
{Level.number}

Lives
{Player .lives }

Start
{Ball .startMoving}

Paddle
{Paddle .leftRight}

Example: Abstract User Interface
for Scene !Game"

Output

Component

Edit

Component

Action

Component

UI

Container

Multiplicity

Assigned

Class/Property

/Operation

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 21

Abstract User Interface: User Interface Components

• Each Scene has exactly one presentation unit containing the scene!s
user interface in terms of abstract User Interface Components

• Abstract User Interface Components (UIC):

– Input-Components: Allows the User to input data (like a textfield)

– Output-Component: Provides Information to the User (like a text label)

– Edit-Component: Provides the User information and allows to edit it (like a
textfield containing text)

– Action-Component: Allows the User to invoke an Action without data input
(like a button)

– Selection-Component: Specialization of Edit-Component which allows the
user to select from a set of items

– Notification-Component: Specialization of Output-Component used to notify
the user on specific situations (like a message box)

– UI-Container used to structure UICs (like a Panel)

• UIC can have multiplicity to specify the number of its instances in the
presentation unit (default: 1)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 22

Abstract User Interface: UI-Realizations

• Media Components from application structure diagram can realize UICs

• Specified by UI-Realization relationship

• Consequence for implementation:

– UICs realized by media components means that the media component is
used on this user interface and (in addition) provides the functionality of the
respective UIC (e.g. listens to mouse events)

– Remaining UICs are implemented by conventional widgets (buttons,
textfields, checkbox, etc.)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 23

Abstract User Interface: Sensors

• Temporal media components may cause additional events
(e.g. termination of a video, collision of an animation)

• Time Sensor: notifies about temporal events

– End of a video

– Specific time interval

• Collision Sensor: notifies about collision of animations with other media
components

– Relationship test specifies which other media components are observed

• Visibility Sensor: notifies if a media objects becomes visible/invisible
(e.g. if a media object becomes masked by a moving animation)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 24

Example: Media User Interface
for Scene !Game"

<<Graphics>>

LevelGraphic
Game

Ball Brick [0..n]

Player.scoreLevel.number Player.lives

Paddle.

leftRight

Ball.startMoving

«Animation»

BallAnimation

«Animation»

BrickAnimation

«Animation»

PaddleAnimation

«Sound»

BrickSound

<<Graphics>>

Wall

<<Graphics>>

OffField

<<Collision>>

Brick

<<Collision>>

Wall

<Collision>>

Paddle

<<Collision>>
OffField

<<test>>

<<test>>

<<test>>

<<test>>

UI

Realization

Sensor

AUIs without

specific realization

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 25

Abstract User Interface
Diagram

Diagrams in MML

Structure Diagram

Application Entities Media Components

Scene Diagram

(Conventional) UI

Media UI

Interaction Diagram

Software
Design

User Interface
Design

Media
Design

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 26

Interaction Diagram

Motivation

• Overall interaction flow/dialogue between the user and the application

• Integrates events from UICs and sensors with the application logic

Parts:

• For each scene an activity

Notation:

• UML activity diagram with limited set of actions and with references to
AUIs and sensors from the media user interface

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 27

Example: Interaction diagram
for Scene !Game"

…

CallOperation

Action

UIInputEvent

Sensor Event

<<Collision>>
Brick

init
(ball)

move
(ball ::)

<<Collision>>
Wall

<<Collision>>
Paddle

<<Collision>>
OffField

move
(paddle ::)

Paddle.

leftRight

startMoving

(ball::)
Ball.start

Moving

Object (property

of the scene)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 28

Interaction Diagram

• Program flow is specified like in UML
Activity Diagrams

– Start Node and End Node

– Decision Node and Merge Node for
decisions („if“)

– Fork Node and Join Node for parallel
actions

• Action in MML: Calls an operation
from the structural model (all Actions
in MML are of type
CallOperationAction)

• In MagicDraw: Target operation is
specified in the Action"s property
window (see figure: operation init()
from application entity Ball)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 29

MML: Summary

+ Behavior:

• Scene Diagram for behavior between scenes

• Interaction Diagram for behavior within scenes

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 30

Code Generation:
Integration of authoring tools

Structure and integration

managed in model

• How to integrate – for the creative design tasks - the powerful multimedia
authoring tools into the model-driven development process?

Generate code for:

• Classes and class attributes

• Overall behavior

• Integration of media objects and the user interface

Generate placeholders for:

• Class operations

• Media objects

• User interface objects and layout

Creative design

performed in

authoring tools

MML

Model

Flash

Director

SVG/JavaScript

…

Manual Completion

 in Authoring Tool

Manual Completion

 in Authoring Tool

Manual Completion

 in Authoring Tool

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 31

Transformation into Code Skeletons

• FLA-File

• ActionScript Class which loads the single scenes according to the
scene diagram

Multimedia
Application

• Placeholders on the stage in the related scene; if a media component
realizes the AUI, then the media component (from the library) is placed
on the stage

• ActionScript Class (!View", !Observer")

Abstract UI
Components

• FLA-File containing placeholders for all media components in its
library; library will be used as shared library for the different scenes

• ActionScript Class (!View", !Observer")

Media Components

• FLA-File showing the scene!s user interface,

• ActionScript Class (!Controller!): entryOperations, exitOperations, code
for interaction

Scenes

Placeholders for operation bodiesClass Operations

ActionScript Classes (!Model", !Observable")Classes

Generated CodeModel

Example: Code Generation for Flash/ActionScript (2.0)

Ludwig-Maximilians-Universität München Prof. Hußmann Multimedia-Programmierung – 10 - 32

Pros and Cons of Model-Driven Development
for Multimedia Application

• Advantages:

– Switch in platform (ideally) requires only change of code generation
transformations

» E.g. from ActionScript 2 to ActionScript 3, from Flash to Silverlight

– Higher level of abstraction leads to deeper analysis

– Code generators can help to create well-structured code
(e.g. modular Flash applications)

• Disadvantages:

– Full code generation not (yet) possible, platform-specific completions prohibit
easy switching between platforms

– Round-trip engineering still needs to be developed

– Writing abstract specifications is not attractive for multimedia developers

• Open issue:

– What is the right language level for integrating the various design
views/activities?

