
Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 1

Agile Development for
Multimedia Projects

Literature:
• Kent Beck: Extreme Programming Explained – Embrace Change,

Addison-Wesley 2000
• Mary & Tom Poppendieck: Lean Software Development – An Agile Toolkit,

Addison-Wesley 2003
• Matt Stephens, Doug Rosenberg: Extreme Programming Refactored:

The Case Against XP, Apress 2003

Praktikum Multimedia-Programmierung
Wintersemester 2008/09

Heinrich Hußmann
LMU München

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 2

Changing Requirements
• Key problem in software development

– Requirements change during course of project

“Real life”

Sw development
Analysis, Design Implementation

Requirements
snapshot

Requirement changes

Inconsistency !

Specific drivers for requirement changes in multimedia projects:
• New technologies & devices, new (corporate) design rules, new services, …
• Feedback from non-technical reviewers (designers, customers)

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 3

Cost of Change
K. Beck, Extreme Programming Explained, p. 21 ff:
“I can remember sitting in a big linoleum-floored classroom as a college junior
and seeing the professor draw on the board the curve found in Figure 1.” ...

Cost of
Change

Time

Fig. 2

“The software engi-
neering community
has spent enormous
resources in recent
decades trying to
reduce the cost of
change – better lan-
guages, better data-
base technology,
better programming
practices, better
environments and
tools, new notations.
What would we do if
all that investment
paid off?” “What if tomorrow’s software engineering professor

draws Figure 2 on the board?”

Cost of
Change

Fig. 1

Reqts. Analysis Design Implem. Test Prod.

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 4

Origins of “Lean Thinking”
• Late 1940s, Taiichi Ohno, Toyota Corp.:

– How to produce cars in small quantities as inexpensive as mass-produced
cars?

– Fundamental lean principle: Eliminate waste.
Anything that does not create value for the customer is waste.

» The Seven Wastes of Manufacturing (Shigeo Shingo):
Inventory, extra processing, overproduction, transportation, waiting,
motion, defects

– Transfer from production process onto development process:
» How much value to the customer is delivered by an ongoing

development project, a design, a prototype?
• James Womack, Daniel Jones, 1996: Value Stream Mapping

– Which part of the production time is spent in actually adding value, which
part is waste?

» Production of a Coca-Cola can: 319 days from mine to consumption, 3
hours spent on production, i.e. 0.04%

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 5

The Seven Wastes of Software Development
• Partially done work

– Requirements, design documents, not yet integrated software modules
– Idea: Try to get it into working state immediately

• Extra Processes
– Idea: Remove all unnecessary paperwork

• Extra Features
– Are they really needed in the end?
– Idea: Resist the temptation, keep it simple.

• Task Switching
– Idea: Assign a developer to one and only one project

• Waiting (for decisions mainly)
– Idea: Try to delay decisions as long as possible and keep working

• Motion
– Idea: Keep developers closely together, enable informal communication,

try to keep a customer representative on the project team
• Defects

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 6

eXtreme Programming (XP) and
Other Agile Methods

• Most famous authors promoting agile methods:
Kent Beck, Alistair Cockburn

• Various methods, covered under the umbrella “agile”:
– Extreme Programming (Kent Beck, ca. 1998), Crystal, Scrum,

Adaptive Software Development
• Common to all agile methods:

– Evolutionary development
– Specific techniques of communication

• Extreme “marketing” effort – lots of “hype”
– Currently more than 20 books
– Only little proper evidence for success

• In the following: “Original” XP according to Kent Beck
– With some minor comments from the discussion in the literature

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 7

The XP Team
• Small group, at most 12 persons
• Group should fit into a single room

– Ideally the group is co-located
for the whole working time

• Special member roles:
– Representatives of the customer (“on-site customer”)
– Tester: Helps the customer to translate his stories into functional tests
– Coach: Helps in keeping the XP discipline
– Tracker: Continuously measures progress of the team and publishes it
– Consultant: External provider of specific knowledge, active on the team only

for a short time
– Big Boss: Encourages the team

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 8

Four Values of XP
• Communication

– XP aims to keep the right communication flowing
– XP defines practices that require communication

• Simplicity
– What is the simplest thing that could possibly work?
– Do a simple thing today and pay a little more tomorrow to change it if needed
– Do not do a complicated thing today that may never be used anyway

• Feedback
– Don’t ask me, ask the system! Have you written a test case for that yet?
– Minute-to minute scale feedback:

» Feedback about system state due to extensive automated testing
– Week-to-month scale feedback:

» Customers get updates about the growth of the system
• Courage

– Fix flaws, don’t circumvent them. Throw code away if it is unstable.

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 9

A Development Episode (1)
• A looks at his stack of task cards. The top card says

“Export Quarter-to-date Withholding”. He addresses B.
• “Hi B, at this morning’s standup meeting I heard you had finished the

quarter-to-date calculation. Do you have time to help me with the
export?” B agrees, and they are a pair now for some time.

• A and B need some additional information about the data structure and
interrupt C for 30 seconds. They get the answer immediately.

• By looking at the existing export test cases, a simple abstraction
(introduction of a superclass) is found by A and B. The code is
restructured (refactored) with the superclass. All existing test cases are
run successfully. Some other test cases may also profit from the new
superclass; this is written down on the pair’s to-do card.

• A and B together write the test case for the export function. During this,
they note some ideas for the implementation on the to-do card.

• A and B run the test case, and it fails as expected, due to the missing
implementation.

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 10

A Development Episode (2)
• During implementation, some other test cases come to

the minds of either of the two, and are noted on the
to-do card. Whoever of the two has the best ideas implements the export
function and later the additional test cases, the other watches and
comments. After a few iterations, all new test cases run successfully, as
well as the old tests.

• What’s left on the to-do-card? The two restructure (refactor) other test
cases and make sure all tests run successfully.

• Look, the integration machine is free! The two go to integration machine,
load their new code (tests and implementation) and run all the tests
known. Strangely, a not too much related test fails. After a few minutes, it
has been clarified why and all tests run successfully.

• The new version is released.
This is the whole XP lifecycle in a nutshell.

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 11

User Stories
• “Each user story is a short description of the behaviour of the system,

from the point of view of the user of the system. In XP, the system is
specified entirely through user stories.”

(R. Jeffries, A. Anderson, C. Hendrickson, XP Installed,
Addison-Wesley 2001, p. 24)

• Preparation:
– Everybody (representing the customer) gets a card, tries to scribble on it and

tears up the card.
• Process:

– Customer writes story on card, possibly in iterations
– Programmers “listen” - ask questions just for clarification
– Stories are promises for conversation

• How many:
– At least one per feature
– One story implementable in a few days to a few weeks time

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 12

Planning in XP
• Releases:

– One to six month period
– Software actually delivered to customer

• Iteration:
– One to three weeks period
– Produces an intermediate version for the next release

• Story:
– Closely linked to system features
– One or several stories to be realized in one iteration

• XP suggests to plan ahead for one to two steps at most on all three
levels

(Presentation based on chapter 5 of
K. Beck/ M. Fowler: Planning XP, Addison-Wesley 2001

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 13

The Twelve XP Practices
• The Planning Game
• Small releases
• Metaphor
• Simple design
• Testing
• Refactoring
• Pair programming
• Collective ownership
• Continuous integration
• 40-hour week
• On-site customer
• Coding standards

All practices are
interwoven with

each other.
The picture will

gradually become
more complete
over 12 slides...

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 14

Practice 1: The Planning Game
• XP develops the system in an evolutionary way, so the team has to plan

what the features of the next iteration will be.
• This is a game between two parties, leading to a balanced solution:

– Business people (customer): What are the valuable features? What are the
priorities? When are the features needed?

– Technical people (programmer): How expensive is a feature to implement?
What are the consequences? What is a realistic schedule?

Customer

Customer

Programmer Programmer

define value

choose value

build value

estimate cost

learn

Figure from Jeffries/Anderson/Hendrickson: XP installed, Addison-Wesley 2001

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 15

Practice 2: Small Releases
• Release = Software version handed over to customer

• Every release should be as small as possible, i.e. contain a small
change to the previous release

– Containing the most valuable business requirements
• Every release has to make sense as a whole
• Reduce release cycle:

– One month or two (if possible)

• Potential problems:
– Usually, the small releases will not go into productive use

(to avoid instabilities, additional user training etc.)
– Therefore, specific quality assessment by customer is expected

» Is this realistic?

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 16

Practice 3: Metaphor
• Single overarching metaphor

– Naive: Terms mirroring the real world, e.g. contract, customer, ...
– Less naive: e.g. pension calculation as a spreadsheet with rows and columns

• “The metaphor in XP replaces much of what other people call
‘architecture’.” (K. Beck, XP Explained, p. 56)

• In practice more similar to a domain model as done in system analysis.

• Potential problems:
– Metaphor may become too complex to be helpful for large systems.

(Amr Elssamadisy, quoted in Stephens/Rosenberg p. 318)
• Consequence:

– UML Class diagram of the problem domain and its metaphor may be helpful

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 17

Practice 4: Simple Design
• “The right design for the software at any given time is the one that

1. Runs all the tests
2. Has no duplicated logic
3. States every intention important to the programmers
4. Has the fewest possible classes and methods.”

(K.Beck, p.57)

• XP mantras: “The simplest thing that could possibly work.”,
“You ain’t going to need it. (YAGNI)”
– Erase (or better do not add in the first place) everything unnecessary

• Software design seen as a communication medium
– Very similar to a traditional design specification...

• Design is represented in code
– There is no separate documentation
– Graphical sketches (e.g. UML) only used for short digression

(essentially for finding the right questions)

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 18

Practice 5: Testing
• “Any program feature without an automated test simply does not exist.”

(K. Beck, p. 57)
• Test-First approach:

– Tests are written before the program
– Tests are used to clarify the usage of an interface, to define the expected

effect, to single out problematic special cases, ...
– Tests are the XP replacement for traditional software specification

• Automated tests:
– Tests are kept in an executable infrastructure and can be run at any time
– Tests give feedback and confidence to the programmer
– “Test infected: Programmers love testing”

(E. Gamma about the xUnit testing framework)
• Programmer-written unit tests: Must always run to 100%
• Customer-written functional tests based on “stories”: May run only

partially for some time

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 19

Practice 6: Refactoring
• Adding new features in an arbitrary way will lead to ill-structured code
• When adding a new feature, the structure of the system may need to be

adapted (refactored)
– Refactoring may remove code, introduce new code but keeps the

functionality unchanged (all tests run 100%)
– Simple steps like combining parameters of a method into a data structure
– Complex steps like applying design patterns

• This is done only when necessary to keep the solution simple:
– Main reason for refactoring: To avoid duplication of logic
– Possible other reason: Smaller and more elegant design after introduction of

new features
• How can we be sure not to destroy working functionality by refactoring?

– Use automated tests
– Refactor first, run the tests, then add the feature, run the enhanced tests

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 20

Practice 7: Pair Programming
• “All production code is written with two people looking at one machine,

with one keyboard and one mouse.” (K. Beck, p. 58)
• Two roles:

– Keyboard/mouse owner: Thinks tactically about the best way to implement
the method under development

– Observer: Thinks strategically about the overall approach and simplification
– Roles in the pair may be switched after some time

• Dynamic pairing:
– Pair partners should change frequently
– Changes may take place even several times a day

• Potential problems:
– Complex programming tasks are often better solved by a single person

“meditating” over the solution
– Some people simply do not like the pair situation

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 21

Practice 8: Collective Ownership
• Through pair programming, any piece of code has many authors

– Side effect: Removes too complex code
• Everybody in the team has the right to add value to any portion of the

code at any time.
• If somebody does not know some part of the system well, he/she should

pair up with an expert on this part
• Practical tool for co-ordination: Stand-Up Meetings

– Regular meetings in the morning of each day
– Everybody has to stand in a circle (to keep the meeting short)
– In turn, each team member reports what has been done yesterday and what

the plans are for today

• Potential problems:
– Collective ownership means no individual responsibility
– Collectivism partially contradicts to human nature

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 22

Practice 9: Continuous Integration
• There is always an up-to-date running version of the full system.
• Integration is not a late development stage but done on a daily basis.
• Once a day, newly developed code is integrated into the common code

basis
• Separate “integration machine”

– Can be used only by one developer pair at a time
– Keeps the current version of the integrated system
– Programmers

» load new/modified code
» check for collisions
» run all tests, fixes problems, ... until all tests run 100%

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 23

Practice 10: 40-Hour Week
• Overtime considered a symptom for a serious problem of the project
• XP-rule: You can’t work a second week of overtime.
• Basic idea: People should not get too exhausted

• Potential problems:
– Customers may have the feeling the team does not work hard enough
– Fully unrealistic when delays occur and important deadlines are approaching
– The on-site customer is a single point of failure who has low chances for a

40-hour week

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 24

Practice 11: On-Site Customer
• “A real customer must sit with the team, available to answer questions,

resolve disputes, and set small-scale priorities. By “real customer” I
mean someone who will really use the system when it is in production.”

(K. Beck, p. 60)
• Concept of on-site customer has developed since the original book of

2000
– Now “Whole team”: There may be several representatives of the customer
– Only representative of the customer required, no longer a “real customer”

• Potential problems:
– Definitely the weakest point of the XP approach.
– On-site customer tends to get overloaded, since he/she has the final

responsibility for too many things
– Customer organisations tend to assign the role to inexperienced people
– On-site customer gets mentally separated from his organization and may feel

too much like a team member to be effective.

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 25

Practice 12: Coding Standards
• To enable collective ownership, coding standards for the team are

necessary
– Naming conventions
– Conventions for embedded documentation
– Code layout conventions
– Framework for automated tests

• These standards need to be discussed thoroughly, so that everybody
accepts them without resistance

• Fortunately, for modern languages “style guides” often exist already.

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 26

Elements of XP and their Applicability
to Multimedia Authoring

• The Planning Game applicable directly
• Small releases applicable directly
• Metaphor applicable in adapted way
• Simple design applicable in adapted way
• Testing How to automate tests for Flash?
• Refactoring applicable in adapted way
• Pair programming applicable directly
• Collective code ownership applicable directly
• Continuous integration applicable directly
• 40-hour week applicable directly
• On-site customer applicable directly
• Coding standards applicable / which standards?
• Easily modifiable program code media objects difficult to modify

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 27

Unit-Testing ActionScript (3.0) Classes
• Principle:

– Test cases written as ActionScript code
– Conventions (and test framework) for systematic execution of tests

• Test frameworks for unit tests:
– Well-known standard: derivations of xUnit (e.g. JUnit for Java)
– For ActionScript, unit testing frameworks are available on the Web:

» ASUnit for ActionScript 2.0, now extended to 3.0:
see http://www.asunit.com

» FlexUnit from Adobe Labs for Flex and ActionScript 3.0:
see http://www.adobe.com/devnet/flex/articles/unit_testing.html

– Simple own “framework” can be written with moderate effort

• Limitations:
– Does work only with pure ActionScript classes
– Not easily applicable to graphical input/output and timeline animations

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 28

Basic Terminology for Unit Testing
• Assertion

– Statement of expected outcome
– Stated as program code

• Test fixture
– Setup required to execute a test
– E.g. creation of a number of objects or processes

• Test case
– Checks for a specific response to a particular set of inputs

• Test suite
– Accumulation of test cases or other test suites

• Test runner
– (Graphical) component displaying the outcome of tests

• Test harness (Test-”Geschirr”,”Harnisch”)
– Overall infrastructure for unit testing

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 29

Example for Unit Testing with FlexUnit
package {

import flexunit.framework.TestCase;
import flexunit.framework.TestSuite;
public class AccountTest extends TestCase {

public function AccountTest(methodName : String){
super(methodName); }

public static function suite():TestSuite{
var accountTS:TestSuite = new TestSuite();
accountTS.addTest(new AccountTest("testNew"));
return accountTS; }

public function testNew():void{
var account:Account = new Account();
assertEquals("Expecting zero account balance",

0, account.getBalance());} }}

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 30

UI Testing with Flash
• Tests for user stories

should be based on
interaction

• Tools for UI testing:
– Record/playback

facility for interface
events

– Tools exist which
are based on
UI components,
E.g. AutoTestFlash

• Does not work for
graphical output and
pixel-based input

write(txInput_Left, ‘23’)
write(txInput_Right, ‘56’)
click(btn_Plus)

http://osflash.org/autotestflash

Ludwig-Maximilians-Universität München Prof. Hußmann Praktikum Multimedia-Programmierung – 31

Summary: XP for Flash
• Most of the XP practices can be applied with Flash
• Team room and joint presence is required
• Problematic issues:

– Automated tests
– Pre-produced artistic media (graphics, photos, video)

	Agile Development for �Multimedia Projects
	Changing Requirements
	Cost of Change
	Origins of “Lean Thinking”
	The Seven Wastes of Software Development
	eXtreme Programming (XP) and �Other Agile Methods
	The XP Team
	Four Values of XP
	A Development Episode (1)
	A Development Episode (2)
	User Stories
	Planning in XP
	The Twelve XP Practices
	Practice 1: The Planning Game
	Practice 2: Small Releases
	Practice 3: Metaphor
	Practice 4: Simple Design
	Practice 5: Testing
	Practice 6: Refactoring
	Practice 7: Pair Programming
	Practice 8: Collective Ownership
	Practice 9: Continuous Integration
	Practice 10: 40-Hour Week
	Practice 11: On-Site Customer
	Practice 12: Coding Standards
	Elements of XP and their Applicability�to Multimedia Authoring
	Unit-Testing ActionScript (3.0) Classes
	Basic Terminology for Unit Testing
	Example for Unit Testing with FlexUnit
	UI Testing with Flash
	Summary: XP for Flash

