Privacy in E-learning

Hauptseminar "E-Learning" – Sommersemester 2008

Simon Mansfeld LFE Medieninformatik 23.07.08

Outline

Ludwig— LN Maximilians-Universität— München—

- E Privacy (What? Why?)
- E-learning Framework for Privacy-Preserving E-learning
 - \equiv Privacy Requirements
 - \equiv Grading of Privacy Sensation
- Privacy-Preserving Solutions
 - \equiv Mix Networks and Secure Channels
 - \equiv Policies
 - \equiv Anonymous Credentials
- \equiv Pros and Cons of these Systems
- \equiv Balancing Act Between Anonymity and Identification

1. Privacy What Is Privacy?

"Privacy can be described as a learner's ability to maintain a 'personal space' within which the learner can control the conditions under which personal information is shared with others."

(El-Khatib et. al)

 \rightarrow Freedom to choose what others may see

 \rightarrow True nature undetectable

1. Privacy Why Is Privacy Necessary?

\equiv Competitive reasons

- \equiv Advantage on the market
- ∃ Electors interest
- ≣ ...

Personal reasons

- \equiv Protection against the tutor
- \equiv Hiding demographic information (age, race, gender, ...)
- ≣ ...

1. Privacy E-commerce Not Suitable

 \equiv Other electronic applications (e. g. e-commerce) fulfill privacy requirements

 \equiv Not suitable

- \equiv Main problem: kind of transaction
 - \equiv Transactions between client and system are independent
 - \equiv E-learning: interactive, interwined
- ∃ History
 - \equiv Not necessary for e-commerce
 - \equiv E-learning: important showing qualifications (e. g.)

1. Privacy Current Standards

Problems

- \equiv Missing specification of models and technologies (IEEE P1484)
- \equiv No details implemented (IMS CLC)
- \equiv Less regard on privacy and security (ARIADNE)

2. Privacy-Preserving E-learning Three Privacy Requirements (1/2)

Ludwig_____ Maximilians-Universität___ München____

- \equiv Data integrity
- \equiv Confidentiality
- \equiv Access control
- \equiv Data integrity
 - \equiv Deletion or modification while transmitting process must not be possible
 - \equiv Important: Learner commits answer of an exam

Ludwig_____ Maximilians-Universität___ München____

2. Privacy-Preserving E-learning Three Privacy Requirements (2/2)

\equiv Confidentiality

- \equiv Private information only seen by persons learners want to
 - (e. g. test scores = appropriated tutor)
- \equiv Important: Personal and competitive reasons
- \equiv Two stages:
 - \equiv While transmission (\rightarrow encryption)
 - ∃ Storage
- \equiv Access control
 - \equiv Restricted access to personal data
 - \equiv Important: Problem if super-users ("admins") exist

2. Privacy-Preserving E-learning Grading Of Privacy Sensation

"Different learners have different privacy requirements" (Aïmeur et al., 2008)

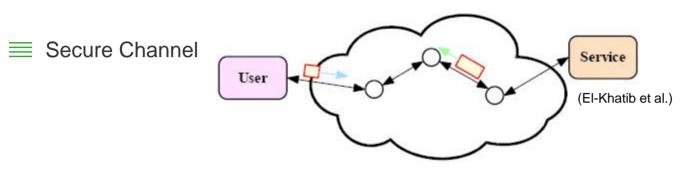
 \equiv Possible points of interest from a privacy point of view

- \equiv Identity: All information make it know who the user physically is
- \equiv Demographic profile: Age, gender, race, ...
- \equiv Learning profile: Learners qualification and learning style
- \equiv Course history: List of graduated courses and current courses

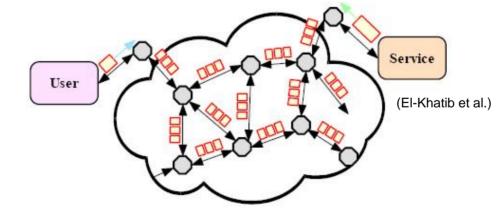
2. Privacy-Preserving E-learning Grading Of Privacy Sensation

Ludwig_____ LIN Maximilians-Universität___ München____

\equiv Possible grading:

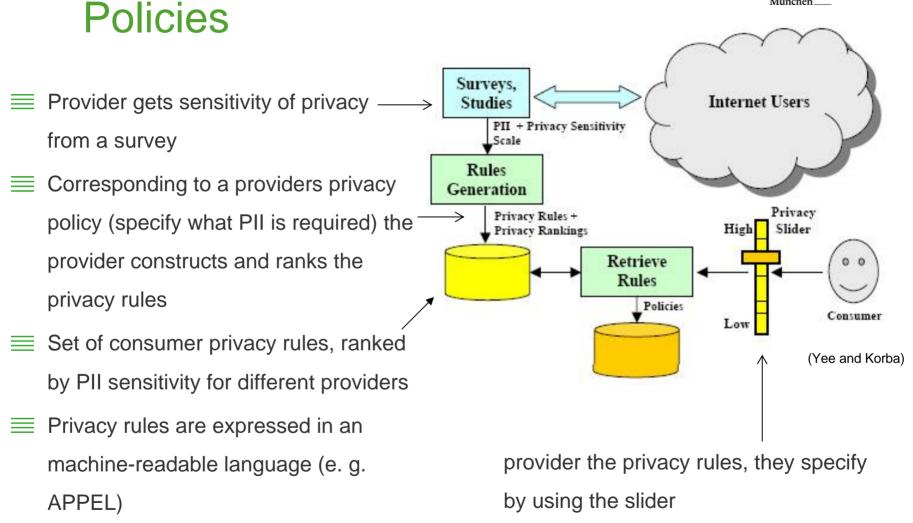

■ No privacy → full privacy: Does not care about / wants privacy
→ All profiles secret
■ No tracking → strong tracking: Not even know the user is a visitor
→ All activities related to a certain user

\equiv Individual must have possibility to decide


- \equiv Advantages of e-learning systems vs. telling personal information
- \equiv Different persons have different privacy sensations
- \equiv For different applications exist different privacy sensations

3. Privacy-Preserving Solutions Mix Networks

Ludwig Maximilians-Universität München



- \equiv Only channel between user and service encrypted
- \equiv Traffic analyze and time detect possible!
- \equiv Mix Network

- \equiv Date and traffic from different users mixed at each node
- \equiv Difficult to determine origin, destination and nature of the message

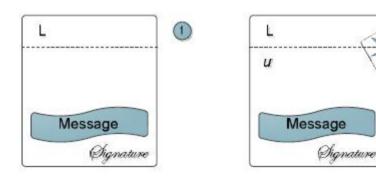
LMU Munich Media Informatics

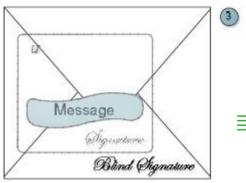
Privacy-Preserving Solutions

Consumer obtain online from policy

3.

Adapt rules for different services


Ludwig


Maximilians-Universität München

3. Privacy-Preserving Solutions Anonymous Credentials for ES

Ensuring that users have certain qualifications without leaving traces to detect their real identity

(Aïmeur et al.)

- Example: Anonymous Learner Credential
 - ∃ Goal: Prove to an external entity (EE) that the user was enrolled in an e-learning system (ES)
 - $\equiv \text{Learner (known as L) creates a pseudonym} u \text{ in the EE}$
 - Request of L to digitally sign m (content of registration certificate) (1)
 - \equiv ES signs m and sends it back to L (2)
 - \equiv L asks the ES for a blind signature of m (3)
 - \equiv The ES blindly sings m
- \equiv Prevention of sharing credentials:

Verification contains an entry (learner's pseudonym) in the Revocation of Anonymous Credential List (RACL).

4. Pros and Cons

Mix networks

[+] time analyze, origin and destination hard to determine

[-] increasing of costs (overhead), data transmission time (delay)

Policies

[+] create own privacy rules, warning if there is a mismatch

[-] no guarantee that the web site acts like it claims to do

Anonymous Credentials

[+] association between acquired certifications and learners' pseudonyms

[-] users' trust relies on the authenticity of the public key

5. Balancing Act Anonymity ⇔ Identification

\equiv Balancing Act

- \equiv Adaptable to learning style
- \equiv Mobile and individual useable
- \equiv Test situations: Ensure that users are who they claim to be
- → The more adapted the more personal data are important
- → For test situation, the users' identities must be known